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Abstract—This paper develops the mathematical side of a theory of inactivations in human
biomechanics. This theory has been validated by practical experiments, including zero-gravity
experiments. The theory mostly relies on Pontryagin’s maximum principle on the one side
and on transversality theory on the other side. It turns out that the periods of silence in the
activation of muscles that are observed in practice during the motions of the arm can appear
only if “something like the energy expenditure” is minimized. Conversely, minimization of a
criterion taking into account the “energy expenditure” guaranties the presence of these periods
of silence, for sufficiently short movements.
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1. INTRODUCTION

In order to perform accurate goal-directed movements, the central nervous system (CNS) has
to compute neural commands according to the initial state of the body, the location of the target,
and the external forces acting on the limbs. Arm movement planning requires solving redundancy
problems related to angular displacements, joint torques, muscular patterns, and neural inputs [4].

Experimental studies reported stereotypical kinematic features during pointing and reaching
arm movements (e.g., quasi-straight finger paths, bell-shaped finger velocity profiles [1, 22, 30]).
These features were found to be robust despite changes in mass, initial/final positions, amplitudes,
and speeds of displacements [2, 7, 18, 19, 25].

Therefore, many studies have attempted to identify the principles of motion planning and con-
trol, hypothesizing that movements were optimal with respect to some criteria. The present article
addresses the question whether motor planning is optimal according to an identifiable criterion.

This question amounts to solving an inverse optimal control problem: given recorded experimen-
tal data, try to infer a cost function with regard to which the observed behaviour is optimal [31]. In
the theory of linear-quadratic control, the question of which quadratic cost is minimized in order to
control a linear system along certain trajectories was already raised by R. Kalman [20]. Some meth-
ods allowed deducing cost functions from optimal behaviour in system and control theory (linear
matrix inequalities [9]) and in Markov decision processes (inverse reinforcement learning [23]).

The present work introduces a new methodological point of view in inverse optimal control
problems.

The starting point is the observation of simultaneous inactivation of opposing muscles during
movements presumed as optimal. Using mathematical transversality arguments from differential
topology, we proved that the minimization of a nonsmooth cost is a necessary condition to obtain
these inactivation phases along optimal trajectories.

The second idea that guided our work is that the cost should contain a term of energetic
consumption. During a movement, such a term is related to the work of muscular forces. However,
work is a signed physical quantity that may cancel itself out, even though both active and resistive
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forces consume energy in muscles. Therefore, work has to be always counted positive in order to
express the energy expenditure of a movement: this is the absolute work of forces. The point is that
this function is nondifferentiable and actually presents the typical (Lipschitz) nonsmoothness, the
one of the absolute value function. In other words, the simultaneous inactivation of muscles that
we observed provides evidence for an absolute-work-like cost. Note that a similar nonsmooth cost
function has been proposed by other authors [24].

Reciprocally, we establish what we call the “inactivation principle”: minimizing a cost simi-
lar to the absolute work implies the presence of simultaneous inactivation of both agonistic and
antagonistic muscles acting on a joint during fast movements.

To summarize, our analysis shows that inactivation is a kind of necessary and sufficient condition
for the minimization of an absolute-work-like cost. As far as we know, this is the first time that
such a condition has been proved.

The above described methodology is presented in Section 2 in the large framework of fully
actuated mechanical systems. The proof of the technical transversality results is postponed to
Section 5.

The purpose of Section 3 is to apply the above theory to the problem under consideration,
the arm movements. We first report experimental data obtained in a previous work [5]; then
an optimality criterion is proposed that allows one to reproduce temporal and spatial features of
biological arm movements.

We finally present in Section 4 important extensions of the inactivation principle to more specific
systems.

2. METHODOLOGY

Although human vertical arm movements are studied here, our methodology may apply to
locomotion, whole-body reaching, and more generally to a very general class of mechanical systems.
We present the theory in this larger framework.

2.1. Modelling. Fully actuated mechanical systems. We consider a mechanical system with
generalized coordinates x ∈ R

n (or in an n-dimensional manifold) and Lagrangian:

L(x, ẋ) =
1
2
ẋTM(x)ẋ − V (x),

where M(x) is the inertia matrix (which we assume to be symmetric and invertible) and V (x) is
the potential energy (here due to gravity).

We divide the external generalized forces acting on the system into two components: the first
one, denoted by τ = S(x)u, resulting from the input u, and the second one, denoted by N(x, ẋ),
representing any other forces acting on the system, mainly friction forces. Each input ui represents
the action of an actuator (a pair of muscles in the context of this paper) and is generally supposed
to be bounded.

The main assumption is that the control acts on every degree of freedom (so the denomination
“fully actuated”), that is, u ∈ R

n and S(x) is invertible for every x. We will sometimes assume
moreover (in the exactly fully actuated case) that we directly control each degree of freedom, that
is, S(x) = Id. Note that this last assumption is always satisfied up to some feedback of the type
τ = S(x)u.

The equations of motion are given by substituting the value of L into Lagrange’s equation,

d

dt

∂L

∂ẋ
− ∂L

∂x
= S(x)u + N(x, ẋ) = τ + N(x, ẋ).

They are of the form ẍ = φ(x, ẋ, u), with

φ(x, ẋ, u) = M(x)−1
(
N(x, ẋ) −∇V (x) − C(x, ẋ)ẋ + τ

)
, (1)
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and the Coriolis matrix C(x, ẋ) ∈ Mn(R) is defined as

Cij(x, ẋ) =
1
2

n∑
k=1

(
∂Mij

∂xk
+

∂Mik

∂xj
− ∂Mkj

∂xi

)
ẋk.

To summarize, a fully actuated mechanical system is described by an equation of the general
form (Σ)

ẍ = φ(x, ẋ, u), (2)

where we assume that

• x belongs to R
n (or to an n-dimensional differentiable manifold);

• u belongs to a subset U of R
n that is a product of intervals of the type

U = [u−
1 , u+

1 ] × . . . × [u−
n , u+

n ];

moreover, the origin lies in the interior int U of U (i.e., u−
i < 0 < u+

i );

• the mapping φ is smooth, i.e., φ ∈ C∞(R3n, Rn), and its Jacobian matrix ∂φ
∂u(x, ẋ, u) is always

invertible.

As a control system, (Σ) writes as

Ẋ = Φ(X,u), X ∈ R
2n, u ∈ U ⊂ R

n, (3)

with X = (x, y) = (x, ẋ).

Remark 1. The assumption on φ implies that system (Σ) is feedback linearizable.

Optimal control problem. Movements between equilibrium points are defined by their dura-
tion T and by a pair of initial and final conditions (xs, xt) in the configuration space. The system
moves from xs to xt, starting and ending with zero velocity.

Movements are assumed to be optimal with respect to a certain integral cost of the form

J(u) =

T∫
0

f(X,u) dt. (4)

In the paper f is referred to as the cost function. The term J is called the integral cost or the
optimality criterion.

We now define our optimal control problem. Consider the controlled system (Σ) in the form
of equation (3). Fix a source point Xs = (xs, 0) ∈ R

2n, a target point Xt = (xt, 0) ∈ R
2n, and a

time T > 0.
Then, the optimal control problem is

(P) minimize the integral cost J(u) among all trajectories of (Σ) connecting Xs to Xt in time T .

Remark 2. A simplifying assumption in our work is that the duration T of the motion is fixed.
This is not essential, since:

(i) Pontryagin’s maximum principle [28] also allows one to deal with free movement durations:
the time T is then determined by a supplementary condition of optimality (see [28]);

(ii) as in [15], one could search for the time T that leads to a given amount of the integral cost.
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Here, the latter approach is better suited because the optimal cost will be a strictly decreasing
function of T [6, Theorem 1].

The following theorem proves that this problem is well-posed.

Theorem 1 (existence of optimal trajectories). Assume that f is strictly convex with respect
to u. Then the minimum of (P) is reached by some optimal trajectory.

This is shown in [6] in a particular case (the 1-dof arm) and is a consequence of boundedness
of the controls and convexity with respect to u of both the cost function and system (Σ). The idea
is that a minimizing sequence of trajectories converges for some compactness reason of Ascoli type,
and the limit is a trajectory of the system by convexity. General results of this type may be found
in [21].

Our aim is to solve the inverse optimal control problem: given system (Σ) and all (or at least
many) optimal trajectories of (P), retrieve the cost function f . Of course, the qualitative properties
of these optimal trajectories are crucial in the study. We will show that a very important concept
for this matter is that of inactivation.

Definition 1. A partial inactivation (or simply inactivation) is an occurrence during a certain
strictly positive time interval of an optimal trajectory corresponding to ui = 0 for some i, i.e., the
ith control is zero during this time interval. A total inactivation is a simultaneous inactivation of
all controls.

2.2. Necessity of nonsmoothness. The purpose of this subsection is to show that, for the
occurrence of inactivation in optimal trajectories, it is necessary that the minimized integral cost
contain a term with some nonsmoothness at u = 0 (recall that ui = 0 corresponds to inactivation
at the level of the ith degree of freedom).

To emphasize the dependence on the cost, we denote by (Pf ) the optimal control problem (P)
associated with a given cost function f .

Theorem 2. There exists an open and dense subset O of C∞(R3n, R) (endowed with the C∞

Whitney topology) such that if f ∈ O, then (Pf ) does not admit minimizing controls containing
total inactivations, except maybe if the associated trajectory is an equilibrium point of the vector
field Φ(X, 0). In addition, for every integer m, the set O can be chosen so that its complement has
codimension larger than m.

Remark 3. 1. In the previous theorem, we use the Whitney topology on the set of cost
functions f to be minimized. It is the usual topology in this setting. If we restrict ourselves to
a fixed compact set, it is equivalent to consider the usual topology of C∞ convergence on this
compact set.

2. The fact that the bad set (the set of exceptional cost functions for which inactivation may
occur) has codimension infinity (i.e., codimension larger than m, for all m) means that the good
set is extremely large.

The proof of this theorem is postponed to Section 5.
The gist of the proof is the following: we assume that the cost function is smooth, and we

show that (up to exceptional and unstable cases for the cost) the only optimal trajectories that
are constant can be either equilibria trajectories or bang trajectories (i.e., trajectories lying in the
boundary of the control set). This is done by using transversality arguments.

Roughly speaking, for inactivation to be optimal in a stable way (i.e., remain optimal while not
overly perturbing the cost to be minimized), it is necessary that the cost function f be nonsmooth
at u = 0.

A similar theorem also holds for partial inactivation. But in that case, for technical reasons, we
have to restrict ourselves to the set of all C∞ functions f that are moreover strictly convex with
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respect to u, in the strong sense that the Hessian of f with respect to u is everywhere positive
definite. This clearly defines an open subset SC ⊂ C∞(R3n, R) for the Whitney topology.

Theorem 3. There exists an open and dense subset O′ of SC such that if f ∈ O′, then (Pf )
does not admit minimizing controls that contain partial inactivation, except maybe if the associated
trajectory on the subinterval is an equilibrium of the system. In addition, for every integer N, the
set O′ can be chosen so that its complement has codimension greater than N .

The proof of this more difficult result is given in Section 5.

2.3. Inactivation principle. We will restrict ourselves in this subsection to exactly fully
actuated mechanical systems. Recall (see Subsection 2.1) that the latter are systems (Σ) such that

M(x)ẍ = M(x)φ(x, ẋ, u) = ψ(x, ẋ) + u,

and that, up to a feedback, every fully actuated mechanical system can be written in this form.
Absolute work. For actuated mechanical systems, the physical quantity that measures energy

is the work of forces. However, the work of a force pulling in the direction arbitrarily defined as
positive may cancel with the work of the force pulling in the opposite direction. Thus, the absolute
work measures the energy expenditure of a movement, and more specifically, the absolute work of
controlled forces counts the mechanical energy actually spent to control the system.

For an exactly fully actuated mechanical system (Σ), the controlled forces are just u and their
work is

w =
∫

u dx =
∫ n∑

i=1

ui dxi =
∫ n∑

i=1

uiẋi dt.

The absolute work Aw of these forces is then defined as

Aw =
∫ n∑

i=1

|uiẋi| dt. (5)

In the coordinates X = (x, y), Ȧw is the function

Ȧw(X,u) =
n∑

i=1

|uiyi|.

In view of Subsection 2.2, it is very important to notice that Ȧw is Lipschitz continuous, but
nondifferentiable with respect to u. Indeed, its Clarke’s generalized gradient with respect to ui is

∂uiȦw(X,u) =

⎧⎪⎨⎪⎩
−|yi| if ui < 0,

[−|yi|, |yi|] if ui = 0,

|yi| if ui > 0

(6)

and thus is a nonempty interval at a pair (X,u) with ui = 0, yi �= 0.
We will consider integral costs depending explicitly on the variation Ȧw of the absolute work,

that is, of the form

J(u) =

T∫
0

f(X,u) dt, with f(X,u) = ϕ(Ȧw,X, u),
∂ϕ

∂Ȧw
�= 0, (7)

where ϕ is smooth. Due to the absolute work term, the proposed cost function is nonsmooth
(nondifferentiable) but Lipschitz continuous with respect to u. This slight difference is crucial in our

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 268 2010



98 J.-P. GAUTHIER et al.

study. For technical reasons we will also assume that the cost function f(X,u) = ϕ(Ȧw(X,u),X, u)
is strictly convex with respect to u (assumption A).

Remark 4. 1. The assumption of strict convexity, although technical, is natural: it implies
that the function ϕ has a unique minimum with respect to u. The weakest possible hypothesis to
obtain the inactivation principle (see Theorem 4) is precisely that ϕ has a unique minimum with
respect to u. In that case, the existence of a minimizing trajectory will not be guaranteed (it has to
be assumed). Assuming strict convexity is a way to assume both a unique minimum with respect
to u and the existence of a minimizing trajectory (see Theorem 1).

2. In fact, the typical nonsmoothness (Lipschitz) is that of the absolute value function. But it
can be easily taken into account that “negative work” may cost less than “positive work” (this is the
case for the mechanical systems arising from physiology): in place of the function |u|, one has to
consider the Lipschitz function λ|u| for u > 0 and µ|u| for u ≤ 0. We decided here to limit ourselves
to the “nonweighted” absolute work, for the sake of simplicity in exposition.

Pontryagin’s maximum principle. Let us first write for our optimal control problem (P) the
necessary conditions of optimality given by the maximum principle.

Denote by
h(λ,X,P, u) = λf(X,u) + P.Φ(X,u)

the Hamiltonian of the problem, where P ∈ (Rn)∗ (the dual space of R
n) and λ ≤ 0.

If (X(t), u∗(t)) is an optimal trajectory of the problem, then there exists an adjoint vector
P (t) ∈ (Rn)∗, P (t) being absolutely continuous, (λ, P (t)) never vanishing, such that

(i) (X(t), P (t)) meet the Hamiltonian equations:

Ẋi =
∂h

∂Pi
, Ṗi = − ∂h

∂Xi
; (8)

(ii) the Hamiltonian h(λ,X(t), P (t), u∗(t)) reaches its maximum with respect to u at almost
every time t ∈ [0, T ].

Since we assume the cost function f(X,u) to be strictly convex with respect to u, condition (ii)
can be replaced by (if the maximum is not attained on the constraints)

0 ∈ ∂uh. (9)

Let us recall some classical terminology.

• An extremal is a trajectory of the system meeting the necessary conditions provided by the
maximum principle.

• A singular extremal is an extremal corresponding to λ = 0 (or equivalently, to the minimum-
time problem). Extremals corresponding to λ < 0 are called regular.

• A bang extremal is an extremal such that for almost all t ∈ [0, T ] one of the control variables ui

can take the two values ui = u−
i or ui = u+

i only.
• An abnormal extremal is a singular extremal which is not bang.
Note that, since our system is feedback linearizable, it admits no such abnormal extremal. To

the best of our knowledge, this fact has been noticed for the first time in [8]. Let us briefly recall
its proof.

Set P = (p, q). Then our Hamiltonian h, with λ = 0, can be rewritten as

h(0,X, P, u) = py + qφ(x, y, u) (10)

and is smooth with respect to u.
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Along an abnormal extremal, the maximum of h is not attained everywhere on the constraints;
therefore, ∂h

∂u = 0 on a nonempty interval I. Since ∂φ
∂u is invertible, this condition gives q(t) = 0 for

all t ∈ I. Differentiating, we find that q̇(t) = 0 on I and, by the Hamiltonian equations,

0 = q̇ = −∂h

∂y
= p.

Then, p(t) also has to be zero on I. This is a contradiction with the fact that (λ, p(t), q(t)) never
vanishes.

Thus there are only two kinds of extremals in our optimal control problem: singular bang
extremals, associated with discontinuous controls, and regular extremals, whose controls appear to
be continuous, as stated in the following result.

Lemma 1. The optimal controls u∗(t) corresponding to regular trajectories of (P) are contin-
uous with respect to t.

Proof. Lemma 11 in [13] states the following. Consider a function F : R
p × X → R

+, where
X is a manifold and F is continuous, with the additional property that for each compact K ⊂ X,
the restriction FK = F|Rp×K is proper. Then, ϕ(x) = infv∈Rp F (v, x) is a well-defined mapping,
continuous over X. Examination of the proof of this result shows that it also holds for F : R

p ×
X → R. We apply this lemma to our Hamiltonian h. Due to the assumption of strict convexity
for the cost function f and to the fact that λ < 0, h(t, u) = h(λ,X(t), P (t), u) is a strictly concave
function of u. Moreover, it is continuous since X(t) and P (t) are continuous functions of t. Let
u(t0) be a discontinuity value of the optimal control u(t). This means that we can find a sequence
tn → t0 such that u(tn) → û �= u(t0). Applying the above-mentioned lemma to −h(t, u), where
u here is the variable v in the lemma, we find that t → −h(t, u(t)) is a continuous map. But the
minimum being unique, this contradicts the assumption u(tn) → û �= u(t0). �

Statement of the inactivation principle. A rough statement of the inactivation principle is as
follows: provided that the total duration T of the motion is not too large (compared to the minimum
time Tmin), there is partial inactivation along an optimal trajectory of the problem (P) associated
with a cost J(u) of the form given by equation (7). Moreover, total inactivation may appear in a
stable way (stable with respect to small smooth perturbations of the cost, or of the system).

To transform this statement into a theorem, we need precise technical assumptions. We introduce
two hypotheses for a trajectory (X,u) defined on [0, T ]:

(H1) X is a regular extremal (therefore, u is continuous).
(H2) Change of sign for u: a component ui of the control changes sign at some time tc ∈ ]0, T [,

while yi(t) keeps constant sign. This means that there are some times t1 and t2, t1 < tc < t2,
such that ui(t1)ui(t2) < 0 and yi(t) �= 0 for t1 ≤ t ≤ t2.

Theorem 4 (inactivation principle). Along an optimal trajectory of (P) meeting hypotheses
(H1) and (H2) there is partial inactivation. Moreover, some of the regular extremals passing through
an arbitrary X ∈ R

2n have total inactivation.
Proof. Along an optimal trajectory (X,u∗), the Hamiltonian h of the optimal control problem

has to be maximal, which means by equation (9) that 0 ∈ ∂uih for all i = 1, . . . , n. However,

h(λ,X(t), P (t), u∗(t)) = λf(X(t), u∗(t)) + P (t).Φ(X(t), u∗(t)),

and λ < 0 since we consider regular trajectories only. The maximum condition for the Hamiltonian
gives 0 ∈ ∂uih(λ,X(t), P (t), u∗(t)), where

∂uih = P.
∂Φ
∂ui

(X,u∗) + λ
∂ϕ

∂ui
(Ȧw,X, u∗) + λ

∂ϕ

∂Ȧw
(Ȧw,X, u∗)∂uiȦw(X,u∗), (11)
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u

t

u = 0

u > 0:
While u > 0, H (the Hamiltonian)
is differentiable with respect to u
and ∂H

∂u
= 0 in the classical sense

u < 0:
While u < 0, H is differentiable
with respect to u and ∂H

∂u
= 0 in

the classical sense

At u = 0, ∂H
∂u

= 0 is an interval
that has to be crossed continu-
ously. This implies that u has to
remain 0 along some nontrivial
time interval

Fig. 1. Intuitive illustration of the proof of the inactivation principle.

the set Ȧw(X,u∗) being as in equation (6). By hypothesis (H1) and Lemma 1, the control u∗(t) is
continuous. The variables X(t) and P (t) being also continuous, the quantity ∂uih(X(t), P (t), u∗(t))
is an interval I(t) moving continuously with the time t. This interval degenerates to a point as soon
as u∗

i (t) �= 0.
However, since ∂ϕ

∂Ȧw
and λ are both different from zero, hypothesis (H2) implies that I(tc) is a

nontrivial time interval at the time tc where u∗
i (tc) = 0. Since u∗

i (t) changes sign at tc, it takes a
certain strictly positive amount of time to cross I(tc). Then u∗

i (t) remains exactly equal to zero
during some nontrivial time interval. This is partial inactivation.

Continuing, we take an arbitrary X = (x, y) with yi �= 0 for all i = 1, . . . , n and λ = −1. Then,
for u = 0, we compute the set S = ∂uh(X,P, u). Setting P = (p, q), we have ∂P.Φ(X,u)

∂ui
= q ∂φ(x,y,0)

∂ui
.

Since ∂φ(x,y,0)
∂u is an invertible matrix, we can choose q such that 0 is exactly the center of the set

S ⊂ R
n, which has a nonempty interior. It is clear by construction that the extremals starting from

this point (X,P, 0), if continuous, have total inactivation. �
This proof is illustrated in Fig. 1.

Let us examine now the validity of assumptions (H1) and (H2) above.
As for assumption (H1), note that a singular extremal of (P) is an extremal of the minimum-

time problem. Thus, when T > Tmin, assumption (H1) is a consequence of the stronger hypothesis
that there is a unique extremal of the minimum-time problem connecting two given points. This
last hypothesis is easily checkable and seems to hold true generically. For instance, when (Σ) is
linear and n = 1, this is proved in [28, Example 1].

Assumption (H2) (the change of sign of the optimal control) is also true in general. This can be
proved in the following way.

The input-state mapping

PΣ : L∞
[0,T ],Rn → C0

[0,T ],R2n
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is continuous for the ∗-weak topology on L∞
[0,T ],Rn [12]. When T → Tmin from above, we consider the

restriction uT of the optimal control to the interval [0, Tmin]. This defines a sequence of controls that
(by boundedness) we can assume to be ∗-weak convergent to some control u∗(t). By construction,
this u∗(t) is a minimum-time control. Since uT (t) is continuous, if T is close enough to Tmin, uT (t)
has sign changes close to the sign changes of the minimum-time control u∗(t).

The fact that the minimum-time control u∗(t) has changes of sign can be checked directly,
at least when the inertia matrix is constant M(x) ≡ M . In this case, the component ui of the
minimum-time control can only commute between the values u−

i and u+
i . These values are large

enough. Hence, if there is no commutation, ui is constant and large. Therefore, ẏi(t) has constant
sign and yi(t) cannot go from zero to zero.

Remark 5. The previous reasoning shows that in general inactivation is located around in-
stants that are close to the instants where the minimum-time control changes sign (commutes).
This reasoning also shows that inactivation occurs automatically for a duration T of the motion
sufficiently close to the minimum time Tmin. This is coherent with practical observations showing
that for larger T simultaneous inactivation of agonistic and antagonistic muscles may disappear.

3. VALIDATION

3.1. Experimental data. The data were recorded experimentally: they consist of the kine-
matics and the muscle activity of the arm during one degree of freedom (shoulder rotation) and two
degree of freedom (shoulder and elbow rotation) rapid pointing movements in the vertical plane.
The description of the experimental apparatus, as well as a complete analysis of the data, is given
in [5] (see also [26, 27]). Typical experimental data are given in Fig. 2 for the 1-dof case and in
Fig. 3 for the 2-dof one.

First, at a kinematic level, fingertip velocity profiles show significant asymmetries depending on
the movement direction and speed, and fingertip paths are slightly curved. It is often considered [14,
26, 29] that relevant indices for these properties are the relative time to peak velocity (TPV),
defined as the ratio of the acceleration duration to the total movement duration, and the fingertip
path curvature (FPC), defined as the ratio of the maximum path deviation from the line segment
connecting the initial and final points of the trajectory to the length of the line segment. In the 1-dof
case, since the fingertip path is necessarily a circular arc, the TPV is the only significant measure.
Asymmetry means that the TPV is significantly smaller for upward than for downward movements.

Second, at a muscular level, the main feature is the presence of inactivation periods during rapid
pointing movements.

For instance, in the 1-dof case, muscle silent phases are noticeable in the EMG signals of Fig. 2.
The main flexor and extensor muscles acting on the shoulder joint are simultaneously inactive, so
that the net torque resulting from their actions is almost zero during this short period.

For upward movements, simultaneous inactivation of all muscles appeared clearly during a short
time interval in the second half of the motion. In some trials, the triceps remained slightly con-
tracted, thus actively maintaining the arm fully extended. For downward movements, inactivation
also appeared, although less clearly, during the first half of the movement. This simultaneous
inactivation of all muscles lasted on average for approximately 30ms and was clearly observed in
85% of trials, for upward movements. During this period the arm was almost in free fall, an ener-
getically costless movement. Notably, the activities of all muscles stopped at the same instant. This
synchronization suggests that muscle inactivation results from an active optimal motor strategy.

In a typical muscular pattern for the 2-dof case (such as the one depicted in Fig. 3), simultaneous
inactivation of pairs of muscles acting on each joint also occurred. Notice the lag between the
inactivation at the elbow joint and at the shoulder joint, illustrating that in the 2-dof case the
inactivation occurred at each joint separately.
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Fig. 2. Typical experimental data of a 1-dof arm motion performed in upward (left) and downward
(right) directions. Finger velocity profiles (upper part) and four electromyographic signals (DA, Del-
toid (Anterior); DP, Deltoid (Posterior); BI, Biceps; and TR, Triceps) are reported. The periods of
muscular inactivation are emphasized by means of rectangular frames. Data are amplitude normalized,
and the horizontal axis denotes time (in seconds).

The appearance of simultaneous inactivation was also checked in movements starting from dif-
ferent initial arm configurations.

3.2. The proposed criterion. The mechanical models we use to describe the vertical move-
ments of an arm in the 1-dof and 2-dof cases are the following.

The one degree of freedom arm. The control system is

ẍ = u − k cos x + bẋ,

where the constant k reflects the action of the gravity field, b is a friction term, and u ∈ R is the
net torque acting at the joint, u being bounded (u− ≤ u ≤ u+ with u− < 0 < u+).

The two degree of freedom arm. The mechanical equation is

H(θ)θ̈ − ĥ(θ)r(θ̇) + G(θ) + Bθ̇ = τ, (12)

in which θ belongs to R
2, H is the (symmetric positive definite) matrix of principal inertia moments,

ĥ(θ)r(θ̇) is the Coriolis term, G is the vector of gravitational torques, and B is the matrix of friction
terms (a constant here). The term τ is the vector of generalized external torques (the controls in
our case), i.e., τ = u.

Both models are (exactly) fully actuated mechanical systems.
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Fig. 3. Typical experimental data of a 2-dof arm movement. Same notations as in Fig. 2.

The main purpose here is to infer a criterion to be minimized. Following Section 2, from the
presence of inactivations in the experimental data one concludes that the cost contains a term
similar to the absolute work. Reciprocally, such a term will ensure the appearance of inactivations.
We then propose an integral cost in the general form:

J(u) =

T∫
0

f̃(x, y, u) dt + Aw. (13)

This expression represents a compromise between the absolute work Aw and something like a
“comfort term” defined by the function f̃ . For instance (nonexhaustive list), one may choose the
acceleration squared (as in [3]) or the torque squared (as in [24]) for the function f̃ .

This additional term is not crucial. One could assume that the CNS only minimizes the absolute
work, but it seems to also minimize some integral costs accounting for the smoothness or precision of
the movements [3, 11, 17, 32]. While the definition of the mechanical energy spent is well established,
what should be the comfort term is more subjective. It may suggest that the motor system would
avoid large accelerations, so as not to expose tendons and articulations to large jerks.

Here, in all examples and simulations, we will assume that f̃ is proportional to the energy of
acceleration (in the sense of signal processing), that is,

f̃(X,u) =
n∑

i=1

αi(ẍi)2. (14)
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Fig. 4. Results for a simulated 2-dof arm movement: (a) upward direction; (b) downward direction.
Torques and angular velocities, respectively denoted u (N ·m) and y (rad/s), are plotted with respect
to time (seconds), along with the finger velocity (m/s).

The weighting parameters (αi)i=1,...,n are strictly positive constants. We take the values α1 = 0.25
and α1 = 0.25, α2 = 0.25 in the 1-dof and 2-dof cases, respectively.

Nevertheless, we also simulated movements with weighting parameters ranged between 0.05
and 1, and all these instances of the model lead to plausible movements. Therefore, these parameters
may be considered as tuning parameters to improve the quantitative fitting of the model to each
participant.

Note that this term f̃(X,u) is strictly convex with respect to u (in accordance with assumption A,
see Subsection 2.3).

3.3. Validation of the model. The optimal problem (P) corresponding to minimizing the
compromise of equation (13) in both 1-dof and 2-dof cases is studied in detail in [6] and [5]. We show
in Fig. 4 a simulated 2-dof movement, which illustrates the theoretical results (see Subsection 4.1
for simulated 1-dof movements).
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It appears that, for the set of movements and conditions tested, the proposed criterion seems
to be well suited. Notably, we retrieve in all instances of the model the two main features of the
experimental data.

Firstly, in accordance with the inactivation principle, a partial inactivation period (emphasized
by a rectangular frame in Fig. 4) is observed at each joint slightly after the time of peak velocity
during an upward movement, and slightly before the time of peak velocity during a downward
movement. This is in agreement with corresponding experimental results (see Fig. 3).

It is worth noticing moreover that simultaneous inactivation disappears if movements are too
slow or too small. Again, this is consistent with experiments.

Secondly, fingertip velocity profiles are asymmetric (the acceleration duration is shorter than the
deceleration duration) and fingertip paths are curved. For instance, under the conditions of Fig. 4,
the relative time to peak velocity (TPV) is equal to 0.46 and 0.54 for upward (U) and downward (D)
directions, respectively, consistent with the experimental values 0.42 ± 0.02 and 0.53 ± 0.04. The
fingertip path curvature (FPC) is equal to 0.20, which is close to the value 0.14 ± 0.04 experimentally
recorded.

Note also that since the response time of muscles was not modelled in this case, jumps on the joint
torques occur at the initial and final times, leading to nonzero accelerations on the corresponding
velocity profiles. We will see how to handle this problem in the next section.

To be complete, let us mention that experiments and simulations have been realized very recently
in the 3-dof case that confirm the relevancy of the theoretical model [5].

4. EXTENSIONS OF THE INACTIVATION PRINCIPLE

The inactivation principle is valid for much more detailed models than the one presented above.
We will show in this section that it applies, in particular, in two important cases. Firstly, it
holds when considering that the net torque actually comes from agonistic and antagonistic torques.
Secondly, this principle also holds when assuming that the torques are produced by muscles with
nonzero response times, i.e., when the torques cannot immediately reach their maximum value. For
instance, when the control is the derivative of torques (called a gradient constraint case) or when the
dynamics of muscles is modelled, the inactivation period is still present. These results are crucial
for interpreting the inactivation on net torques as simultaneous inactivation of both agonistic and
antagonistic muscles in practice.

4.1. The case of gradient constraints on the torques. This is a first extension of the
theory. We explain what happens in the 1-dof case only, but the case of two degrees of freedom is
similar.

The control system is the one of the 1-dof case, but we require moreover that the derivative of
the torque u be bounded.

We introduce a new control v = u̇, and the problem may be rewritten as (we neglect the
friction term)

ẋ = y, ẏ = u − k cos x, u̇ = v,

v− ≤ v ≤ v+, v− < 0, v+ > 0,

J(v) = Aw +

T∫
0

f̃(X,u) dt → min
v

.

Now the cost function is not differentiable anymore with respect to the state (in place of the
control in previous sections). Therefore, Clarke’s nonsmooth version of the maximum principle is
needed [10].
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Fig. 5. Results for a simulated 1-dof upward movement, with gradient constraints on the torque.
The theoretical phase of inactivation of the muscles is shown (rectangular frame). Note that the time
to peak velocity (TPV) is 0.47 in this case. It would be equal to 0.53 for the corresponding downward
movement, according to experimental findings showing the same directional asymmetries.

If (p, q, r) denotes now the adjoint variables, we get

H̃ = λ
(
y|u| + f̃(x, y, u)

)
+ py + q(u − k cos x) + rv.

Once again, x, y, p, q, r, u are continuous (by nature now, just as classical solutions of differential
equations). The a priori fact that y remains positive is just checked numerically. However, it is
expectable from the results obtained without gradient constraints on the torques.

Also, for reasons similar to those of Subsection 2.3, the abnormal extremals may be excluded:
the maximality of the Hamiltonian for nonbang trajectories implies that r is identically zero, which
implies, with two successive differentiations, that q and p, respectively, are also identically zero.
The total adjoint vector is zero, which contradicts the maximum principle. Hence we may as-
sume λ = −1.

We assume that the gradient constraints v− and v+ are large enough for the optimal control to
be of the following type: the gradient constraints are active only at the beginning and at the end
of the motion. If we refer to the scenario occurring in the 1-dof case, this should be what happens:
without the gradient constraints, the gradient is never large. Then, there will be saturation of the
gradient constraints only because of the jumps at the beginning and at the end of the motion.
Numerical computations confirm this scenario, as illustrated in Fig. 5.

For instance, consider that xt > xs, i.e., an upward movement. Then, to connect (in an optimal
way) the source (xs, 0, us) to the target (xt, 0, ut), where us and ut are the stationary torques
corresponding to the equilibrium positions xs and xt, respectively, the strategy must be as follows:
v = v+ for 0 ≤ t < T1; v− < v < v+ for T1 ≤ t ≤ T2; v = v− for T2 < t ≤ T .

Therefore, inside the interval [T1, T2], the Hamiltonian is maximal with respect to v and we
must have r(t) = 0. Therefore, dr

dt = 0. But by Clarke’s maximum principle this means that
dr
dt ∈ −∂uH̃ = yI + ∂f̃

∂u − q, where I is the Clarke gradient of the absolute value function at zero,
i.e., I = [−1, 1].
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Since dr
dt = 0, we conclude:

0 ∈ −∂uH̃ = yI +
∂f̃

∂u
− q.

This equation was exactly the cause of the presence of inactivation when we proved the inactivation
principle (see the proof of Theorem 4).

Therefore, the inactivation phenomenon persists under torque gradient constraints.
Notice that adding gradient constraints also permits getting smoother velocity profiles with zero

acceleration at the initial and final times.

4.2. Agonistic–antagonistic actuators. In biomechanical systems, a controlled force gen-
erally results from the action of two opposing muscles (one agonistic and one antagonistic). The
control system is still, as in Subsection 2.3, a fully actuated mechanical system; however, the ap-
plied torque writes now as u = u1 − u2, where u1 and u2 are the agonistic and antagonistic torque,
respectively, and are subject to the constraint 0 ≤ u1i ≤ u+

i and 0 ≤ u2i ≤ −u−
i for i = 1, . . . , n.

The purpose here is to show that the inactivation principle persists in this situation.
For the net torque u, the cost is the compromise between the absolute work and a smooth term

of equation (13),

J(u) =

T∫
0

f̃(x, y, u) dt + Aw, with Aw =

T∫
0

n∑
i=1

|uiyi| dt.

This means that, for agonistic–antagonistic torques, we shall minimize

J ′(u1, u2) =

T∫
0

f̃(x, y, u1 − u2) dt + Aw′,

where Aw′ is the total absolute work of external torques:

Aw′ =

T∫
0

(
n∑

i=1

|u1iyi| +
n∑

i=1

|u2iyi|
)

dt.

Consider first a pair (u1, u2) minimizing J ′ and denote by J ′∗ = J ′(u1, u2) the optimal value of
the cost. We set u = u1 − u2. Clearly, u applied to the system

ẍ = φ(x, ẋ, u) (15)

and u1, u2 applied to the system
ẍ = φ(x, ẋ, u1 − u2) (16)

produce identical x-trajectories.
Therefore,

J(u) =

T∫
0

(
f̃(x, y, u1 − u2) +

n∑
i=1

|(u1i − u2i)yi|
)

dt

≤
T∫

0

(
f̃(x, y, u1 − u2) +

n∑
i=1

|u1iyi| +
n∑

i=1

|u2iyi|
)

dt = J ′(u1, u2) = J ′∗.

This shows that the minimum J∗ = minu J(u) ≤ J ′∗.
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Conversely, assume that u provides the minimum J∗ of J(u). We define u1 and u2 from u as
follows (for i = 1, . . . , n):

u1i(t) =
{

ui(t) if ui(t) > 0,

0 elsewhere
and u2i(t) =

{
−ui(t) if ui(t) < 0,

0 elsewhere.
(17)

Again u1 − u2 = u. Hence applying u to equation (15) produces the same x-trajectory as
applying u1 − u2 to equation (16). Therefore, by the definition of u1 and u2, we have

J ′(u1, u2) =

T∫
0

(
f̃(x, y, u1−u2)+

n∑
i=1

(|u1iyi|+|u2iyi|)
)

dt =

T∫
0

(
f̃(x, y, u1−u2)+

n∑
i=1

|(u1i−u2i)yi|
)

dt.

This means that
J ′(u1, u2) = J∗, (18)

which implies that J ′∗ ≤ J∗. It is now clear that J ′∗ = J∗, and also by equation (18) the minimum
is reached by u1, u2 defined in (17).

Notably, by construction, the torques u1i and u2i have simultaneous inactivation only when
ui = 0, for i = 1, . . . , n.

We have proved the following theorem.
Theorem 5 (simultaneous inactivation for agonistic–antagonistic torques). In the case of

agonistic–antagonistic torques, minimizing a cost containing the absolute work leads to simultaneous
inactivation of both torques, exactly at the same times when the optimal net torque is inactive.

4.3. Dynamics of the muscles and the triphasic pattern. In this subsection, we consider,
as in Subsection 4.2, agonistic–antagonistic torques, but we assume some dynamics on each muscle.
For the sake of simplicity, we assume first order dynamics on the muscles, but this restriction is not
crucial. Also, we present the results in the 1-dof case and, in order to make the computations more
tractable, we make the small angles assumption: the system is then replaced by its linearization.

Then, adding the first order time constants σ1 and σ2 on both muscles, we get the following
control system: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ẋ = y,

ẏ = u1 − u2 − k,

u̇1 = −u1

σ1
+ v1,

u̇2 = −u2

σ2
+ v2

(19)

with v1, v2 ≥ 0.
The minimization problem is

min
v1,v2

T∫
0

(
yu1 + yu2 + αẏ2

)
dt.

We will use the a priori fact (which is checked numerically) that, as in the case of the torque
control, y remains positive during the upward motion [6]. The Hamiltonian may be written as

H = −y(u1 + u2) − α(u1 − u2 − k)2 + py + q(u1 − u2 − k) + r1

(
−u1

σ1
+ v1

)
+ r2

(
−u2

σ2
+ v2

)
.

At this point, there is an important technical detail that physiologically makes sense. It can be
understood as muscular co-activation at the end of the motion, a well-known phenomenon in phys-
iology.
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Fig. 6. Optimal triphasic pattern: Illustration of the optimal behaviour of a 1-dof arm, under the
small angles assumption and with a pair of agonistic and antagonistic muscles modelled by first-
order dynamics. The subscripts 1 and 2 denote the flexor and extensor muscles, respectively. The
triphasic pattern is an agonistic burst, followed by an antagonistic burst, and again an agonistic burst.
The inactivation occurs between the first agonistic and antagonistic bursts. The times ti denote the
commutation times. The left graphs illustrate the behaviour of the angular torques (u). The right
graphs illustrate the behaviour of the control signals (v), which are the input signals for muscles
contractions (i.e., the signals driven by motoneurons). All signals are plotted with respect to time t
varying between 0 and T .

Due to the first order linear dynamics on the muscles and the constraints ui ≥ 0, we can only
go back to zero asymptotically. Therefore, the terminal condition ut

2 = 0 is impossible, i.e., the
antagonistic torque cannot go back to exactly zero at the end of the movement.

Hence we require, with ε > 0,

(I) us
1 = k and us

2 = 0, (II) ut
1 = k + ε and ut

2 = ε. (20)

Notice that when modelling muscles dynamics, the initial and final values of both agonistic and
antagonistic torques must be specified in order to maintain the arm at equilibrium.

Requirement (II) is the co-activation at the terminal time T . Then, explicit computations with
the maximum principle, together with a numerical research of the commutation times, show that
the optimal scenario is as shown in Fig. 6.

One can recognize the classical scenario called “triphasic pattern” [16], namely, an agonistic
burst followed by an antagonistic burst followed again by an agonistic burst (the scenario ends with
the above-mentioned co-contraction of the muscles).

In fact, our theory shows that it should be called “quadriphasic pattern” since there is an
inactivation interval between the first agonistic pulse and the antagonistic one.

5. PROOF OF THEOREMS 2 AND 3

Proof of Theorem 2. The proof is based on Thom’s transversality theorem. We will then
make the computations in the spaces of jets. For a positive integer m and a pair (X,u) ∈ R

2n ×R
n,

we denote by Jm
(X,u) the space of m-jets at (X,u) of functions in C∞(R3n, R).
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Set F (X) = Φ(X, 0) and fix a point X0 ∈ R
2n which is not an equilibrium of the vector

field F . We define Am(X0) ⊂ J m
(X0,0) as the set of m-jets of functions f ∈ C∞(R3n, R) such that

the trajectory of equation (3) issued from X0 and associated with the control u = 0 is locally
minimizing for the optimal control problem (Pf ).

Lemma 2. Am(X0) is contained in a vector subspace of Jm
(X0,0) of codimension n(m − 2).

Proof. Without lack of generality we assume X0 = 0. Let jm
0 f be an m-jet in Am(0). By

the definition of Am(0), the trajectory X(·) of F issued from 0 minimizes the problem (Pf ) on an
interval I = [0, s]. Thus X(·) satisfies Pontryagin’s maximum principle on I: there exists a smooth
function P = (p, q) : I → R

n × R
n (the smoothness of P results from that of X) and λ ≤ 0 such

that, for all t ∈ I, (P (t), λ) �= 0 and

(P1) Ṗ (t)T = −∂H
∂X (X(t), P (t), λ, 0),

(P2) H(X(t), P (t), λ, 0) = maxv∈U H(X(t), P (t), λ, v),

where the Hamiltonian of the problem is

H(X,P, λ, u) = pTy + qTφ(X,u) + λf(X,u).

Note that since 0 ∈ int U , property (P2) implies ∂H
∂u (X(t), P (t), λ, 0) = 0. It follows that

q(t)T = −λ
∂f

∂u
(X(t), 0)

∂φ

∂u
(X(t), 0)−1.

If λ = 0, then q ≡ 0. From q̇ ≡ 0 and (P1) we deduce p ≡ 0 and then (P, λ) ≡ 0, which is
impossible. Thus λ is negative and a standard argument of homogeneity allows normalizing it to
λ = −1. Finally, by virtue of (P1) and (P2), respectively, the following holds on the interval I:

ṗT = −qT ∂φ

∂x
(X, 0) +

∂f

∂x
(X, 0),

q̇T = −pT − qT ∂φ

∂y
(X, 0) +

∂f

∂y
(X, 0), (21)

and

qT =
∂f

∂u
(X, 0)

∂φ

∂u
(X, 0)−1. (22)

Now, recall that on I the dynamics is Ẋ = F (X). Since X0 = 0 is not an equilibrium point
of F , we assume, up to a local change of the coordinates X = (X1, . . . ,X2n) on R

2n, that F = ∂
∂X1

.
Differentiating equation (21) with respect to time leads to

q̈T = −ṗT − q̇T ∂φ

∂y
− qT ∂

∂X1

∂φ

∂y
+

∂

∂X1

∂f

∂y
= qT ∂φ

∂x
− ∂f

∂x
− q̇T ∂φ

∂y
− qT ∂

∂X1

∂φ

∂y
+

∂

∂X1

∂f

∂y
, (23)

in which we omit the evaluation at (X, 0).
On the other hand, we can also obtain q̇T and q̈T by differentiating equation (22):

q̇T =
∂

∂X1

∂f

∂u
×

(
∂φ

∂u

)−1

+
∂f

∂u
× ∂

∂X1

(
∂φ

∂u

)−1

,

q̈T =
∂2

∂X2
1

∂f

∂u
×

(
∂φ

∂u

)−1

+ 2
∂

∂X1

∂f

∂u
× ∂

∂X1

(
∂φ

∂u

)−1

+
∂f

∂u
× ∂2

∂X2
1

(
∂φ

∂u

)−1

.
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Substituting these expressions and equation (22) into equation (23), we eliminate qT, q̇T, and q̈T

and obtain
∂2

∂X2
1

∂f

∂u
+ RX

(
∂

∂X1

∂f

∂u
,
∂f

∂u
,

∂

∂X1

∂f

∂Xi
,

∂f

∂Xi

)
= 0 on I,

where, for every X, RX is a linear mapping and X 
→ RX is smooth. Successive derivations and
evaluation of the derivatives at t = 0 (recall that X(0) = 0) lead to a system of equations of the form

∂k

∂Xk
1

∂f

∂u
(0) + Rk

(
∂j

∂Xj
1

∂f

∂u
(0),

∂j

∂Xj
1

∂f

∂Xi
(0); j < k, 1 ≤ i ≤ 2n

)
= 0, k ≥ 2,

where each Rk is a linear mapping.
Thus we have proved Am(0) ⊂ ker π, where π : Jm

0 → R
n(m−2) is the linear mapping which

associates (
∂k

∂Xk
1

∂f

∂u
(0) + Rk

(
∂j

∂Xj
1

∂f

∂u
(0),

∂j

∂Xj
1

∂f

∂Xi
(0); j < k, 1 ≤ i ≤ 2n

))
2≤k≤m−1

with an m-jet jm
0 f .

This linear mapping being obviously surjective, the conclusion follows. �
Theorem 2 follows from Lemma 2 combined with the classical Thom’s transversality theo-

rem. �
Remark 6. In the computations in the jet space, only f(X, 0), ∂f

∂u(X, 0), and their derivatives
with respect to X appear. Thus the statement of Theorem 2 still holds if we replace C∞(R3n, R) by
the set of polynomial functions of u with coefficients in C∞(R2n, R), or, even better, by the space
of functions f(X,u) differentiable with respect to u at u = 0 (and such that f(X, 0) and ∂f

∂u (X, 0)
are smooth). On the other hand, since the set O is open, it is also possible to replace C∞(R3n, R)
by any of its open subsets, for instance by the set SC.

Proof of Theorem 3. Recall that our control system is of the form

ẍ = φ(x, ẋ, u) = ψ(x, ẋ) + S(x)u,

where the n × n matrix S(x) is always invertible and x 
→ S(x) is C∞.
Setting X = (x, y), we rewrite the system as

Ẋ = F (X) +
n∑

i=1

uibi(X), X ∈ R
2n, u ∈ U ⊂ R

n, (24)

where F and b1, . . . , bn are vector fields on R
2n.

An equilibrium of this system is a stationary trajectory X ≡ X0 associated with a control u ≡ u0

such that
F (X0) +

∑
i

u0
i bi(X0) = 0.

As the preceding one, the proof is based on Thom’s transversality theorem. We will then make
the computations in the spaces of jets. For a positive integer N and a pair (X,u) ∈ R

2n × R
n, we

denote by JN
(X,u) the space of N -jets at (X,u) of functions in C∞(R3n, R).

Lemma 3. Let f ∈ SC. Assume that the trajectory (X,u) minimizing (Pf ) satisfies, on a
subinterval I of [0, T ],

• ui0 ≡ 0 for some i0 ∈ {1, . . . , n};
• Ẋ �= 0 (i.e., the restriction X|I contains no equilibrium of the system).
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Then there exists t ∈ I such that the N -jet jN
(X(t),u(t))f belongs to a semi-algebraic subset of

JN
(X(t),u(t)) of codimension greater than N − 2n.

Proof. Recall that, under the hypothesis of the lemma, there is a trajectory (X,u) minimiz-
ing (Pf ). Moreover, this trajectory is not the projection of a singular extremal, and its associated
control u is continuous. Thus, by Pontryagin’s maximum principle applied on I, there exists a C1

function P = (p, q) : I → R
n × R

n such that, for all t ∈ I,
(P1) Ṗ (t)T = −∂H

∂X (X(t), P (t), u(t)),
(P2) H(X(t), P (t), u(t)) = maxv∈U H(X(t), P (t), v),

where H is the normal Hamiltonian of the problem,

H(X,P, u) = pTy + qT(ψ(X) + S(x)u) − f(X,u).

By virtue of (P1), the following holds on the interval I:⎧⎪⎪⎪⎨⎪⎪⎪⎩
ṗT = −qT

(
∂ψ

∂x
(X) +

∂S

∂x
(x)u

)
+

∂f

∂x
(X,u),

q̇T = −pT − qT ∂ψ

∂y
(X) +

∂f

∂y
(X,u).

(25)

On the other hand, (P2) implies that, for every t ∈ I, u(t) satisfies the Karush–Kuhn–Tucker
conditions: there exist Lagrange multipliers λ+(t) and λ−(t) in R

n such that⎧⎪⎪⎪⎨⎪⎪⎪⎩
S(x(t))Tq(t) − ∂f

∂u
(X(t), u(t))T − λ+(t) − λ−(t) = 0,

λ+
i (t), λ−

i (t) ≥ 0, i = 1, . . . , n,

λ+
i (t)(ui(t) − u+

i ) = λ−
i (t)(ui(t) − u−

i ) = 0, i = 1, . . . , n.

Since the control u is continuous, we may assume without lack of generality that there exist a
nonempty subinterval J of I and an integer m ∈ {0, . . . , n − 1} such that

• for i = 1, . . . ,m, we have ui(t) ∈ ]u−
i , u+

i [ for every t ∈ J ; in this case λ+
i ≡ λ−

i ≡ 0 and

(S(x)Tq)i =
∂f

∂ui
(X,u) on J ;

• for i = m + 1, . . . , n − 1, ui is constant on J and equals u−
i or u+

i ;
• un ≡ 0 vanishes on J (i.e., i0 = n); as a consequence, λ+

n = λ−
n = 0 and

(S(x)Tq)n =
∂f

∂un
(X,u) on J.

Denote by v̄ = (v1, . . . , vm) the first m coordinates of a vector v ∈ R
n. Then the minimizing

control can be written as u(t) = (ū(t), u0), where u0 ∈ R
n−m is constant, and

S(x)Tq =
∂f

∂ū
(X,u)T on J. (26)

Case 1: The matrix ∂2f
∂ū2 (X,u) is invertible on a subinterval J ′ of J . It follows from the implicit

function theorem applied to equation (26) that ū is C1 on J ′ and, for all t ∈ J ′,

˙̄u(t) =
∂2f

∂ū2
(X(t), u(t))−1

(
d

dt
S(x(t))Tq(t) −

(
LF −

∑
i

ui(t)Lbi

)
∂f

∂ū
(X(t), u(t))T

)
,
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where LF and Lbi
denote the Lie derivative with respect to F and bi, respectively. We use (25) to

eliminate q̇(t) in the expression

d

dt
S(x(t))Tq(t) = DS(x(t))T(y)q(t) + S(x(t))Tq̇(t)

and obtain

˙̄u(t) = QX(t)

(
p(t), q(t), u(t);

∂2f

∂ūi∂ūj
,

∂2f

∂ūi∂Xj
,

∂f

∂Xi
at (X(t), u(t))

)
, (27)

where QX is a rational function depending smoothly on X.
Fix now s ∈ J ′. Since Ẋ(t) = F (X(t)) +

∑
i ui(t)bi(X(t)) is never vanishing on J ′, we may

assume, up to a local change of the coordinates X = (X1, . . . ,X2n) on R
2n near X(s), that F (X)+∑

i ui(s)bi(X) = ∂
∂X1

. Differentiating (S(x)Tq)n = ∂f
∂un

(X,u) with respect to time near t = s
leads to

d

dt
(S(x(t))Tq(t))n =

∂2f

∂un∂X1
(X(t), u(t)) +

∑
i

∆us
i (t)Lbi

∂f

∂un
(X(t), u(t))

+
m∑

i=1

∂2f

∂un∂ūi
(X(t), u(t)) ˙̄ui(t),

where ∆us(t) = u(t) − u(s). We substitute the expressions of ˙̄u(t) from (27) and of q̇n from (25)
into this equation and obtain, for t near s,

∂2f

∂un∂X1
+ R1

X

(
∆us ∂2f

∂un∂Xi
,

∂2f

∂ui∂uj
,

∂2f

∂ūi∂Xj
,

∂f

∂αi
, p, q, u

)
= 0,

where R1
X is a rational function with coefficients depending smoothly on X, and αi, 1 ≤ i ≤ 3n,

denotes the ith component of the vector α = (X,u).
Successive derivations (with substitution of ˙̄u(t) by equation (27) and of ṗ and q̇ by equation (25)

at each step) and evaluation of the derivatives at t = s lead to a system of equations of the form,
for k ≥ 1,

∂k+1f

∂un∂Xk
1

(X(s), u(s)) + Rk

(
P (s),

∂jf

∂αi1 . . . ∂αij

(X(s), u(s)); j ≤ k + 1
)

= 0,

where Rk is a rational function and if j = k + 1, then at least one of the αi� is a ūi.
Let ΩN

1 be the set of N -jets jN
(X(s),u(s))f such that det

(∂2f
∂ū2 (X(s), u(s))

)
�= 0. It is an open subset

of JN
(X(s),u(s)).

We have proved that
(
jN
(X(s),u(s))f, P (s)

)
belongs to π−1

1 (0), where π1 : ΩN
1 ×R

2n → R
N−1 is the

rational mapping which takes an N -jet jN
(X(s),u(s))g ∈ ΩN

1 and a vector P ∈ R
2n to

(
∂k+1g

∂un∂Xk
1

(X(s), u(s)) + Rk

(
P,

∂jg

∂α1 . . . ∂αj
(X(s), u(s)); j ≤ k + 1

))
1≤k≤N−1

.

This mapping is clearly surjective; therefore, π−1
1 (0) is a semi-algebraic subset of JN

(X(s),u(s)) × R
2n

of codimension N − 1. The projection of π−1
1 (0) on JN

(X(s),u(s)) is then a semi-algebraic subset of
codimension greater than N − 2n, which moreover contains the N -jet jN

(X(s),u(s))f .
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Case 2: The matrix ∂2f
∂ū2 (X,u) is never invertible on J . In order to show that ū is C1 and to

derive an expression for ˙̄u, we need to introduce some notations. We define inductively a sequence
of mappings V � : R

2n × R
n → R

m as follows:

• V 0 = ∂f
∂ū

T
;

• for a positive integer �, the components of V � are

V �
k =

⎧⎪⎨⎪⎩
V �−1

k if 1 ≤ k ≤ r�,

det
(

∂V �−1
i

∂ūj

)
i,j=1,...,r�,k

if r� + 1 ≤ k ≤ m,

where r� = r�(X,u) is the rank of the matrix ∂V �−1

∂ū (X,u).
By hypothesis, r1(X(t), u(t)) is smaller than m for t ∈ J . Since X(·) and u(·) are continuous, up

to a permutation of the indices {1, . . . ,m}, there is a subinterval J ′ of J such that, for any � ≥ 1,
• the rank r�(X(t), u(t)) is constant on J ′;
• the function

δ�(X(t), u(t)) = det
(

∂V �−1
i

∂ūj
(X(t), u(t))

)
1≤i,j≤r�

is never vanishing on J ′;
• if r� < m, then

V �(X(t), u(t)) =
(
(S(x(t))Tq(t))1, . . . , (S(x(t))Tq(t))r1 , 0, . . . , 0

)
for all t ∈ J ′.

Notice that an easy induction shows the following expression:

V �
k = δ1 . . . δ�

∂�+1f

∂ū�+1
k

+ Gk,�, (28)

where Gk,� is a polynomial function of the derivatives of the form ∂jf
∂ūi1

...∂ūij
, with j ≤ � + 1, each

il ≤ k, and
∑

l il < k(� + 1).
Denote by L the largest integer such that rL < m (we set L = +∞ if the latter condition is

always satisfied). Then, for � = 1, . . . , L, V �
m(X,u) ≡ 0 on J ′. If moreover L < ∞, then on J ′

V L(X,u) =
(
(S(x)Tq)1, . . . , (S(x)Tq)r1 , 0, . . . , 0

)
and

∂V L

∂ū
(X,u) is invertible,

with u(·) = (ū(·), u0). It then follows from the implicit function theorem that ū is C1 on J ′.
Following exactly the argument of case 1, we obtain a system of equations of the form, for a
fixed s ∈ J ′,

∂k+1f

∂un∂Xk
1

(X(s), u(s)) + R′
k = 0, k ≥ 1,

where R′
k is a rational function of P (s) and of the derivatives ∂jf

∂αi1
...∂αij

(X(s), u(s)) such that
j ≤ k + L and if one of the αi� is un, then j ≤ k + 1 and j = k + 1 implies that at least one of the
other αi�′ is a ūi.

Set M = min(L,N − 1). Let ΩN
2 be the set of N -jets jN

(X(s),u(s))f such that

δ1(X(s), u(s)) . . . δM (X(s), u(s)) �= 0.

It is thus an open subset of JN
(X(s),u(s)).
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We have proved that
(
jN
(X(s),u(s))f, P (s)

)
belongs to π−1

2 (0), where π2 : ΩN
2 ×R

2n → R
N−1 is the

rational mapping which takes
(
jN
(X(s),u(s))f, P (s)

)
to((

δ1 . . . δ�
∂�+1f

∂ū�+1
k

(X(s), u(s)) + Gk,�

)
1≤�≤M

,

(
∂k+1f

∂un∂Xk
1

(X(s), u(s)) + R′
k

)
1≤k≤N−M−1

)
.

This mapping is clearly surjective; therefore, π−1
2 (0) is a semi-algebraic subset of JN

(X(s),u(s)) × R
2n

of codimension N − 1. The projection of π−1
2 (0) on JN

(X(s),u(s)) is then a semi-algebraic subset of
codimension greater than N − 2n, which contains the N -jet jN

(X(s),u(s))f . �
Theorem 3 follows from Lemma 3 combined with standard transversality arguments. �
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