

Atomes, Molécules, Solides

FILI

PARIS

FACULTÉ DES SCIENCES D'ORSAY

universite

ISMO

E. Dartois, ISMO, Orsay, France emmanuel.dartois@u-psud.fr

Introduction

Exemples de spectres, Abondances, Molecules détectées

Atomes

Hydrogène et atomes hydrogénoides

Modele de Bohr

niveaux d'energie

transitions

ionisation

recombinaison

structure fine

Diagrammes de Grotrian

Introduction	Solides
Atomes	Introduction Solides réfractaires (et très grosses molécules)
Hydrogène et atomes hydrogénoïdes	Observation
Modèle de Bohr	Minéraux (compositions et phases)
Niveaux d'énergie	≠ formes de matière carbonée et leur mode
Transitions	d'émission/absorption (PAHs, fullérènes, HAC)
Ionisation	
Recombinaison	Solides volatiles
structure fine et hyperfine	
transitions	Manteaux de glace interstellaires
Diagrammes de Grotrian	Observation
	- Formation
Molécules	Abondances
	Interactions gaz/grain et processus énergétique
Molécules diatomique	
Etats électroniques	Réactions de surface
Vibrationnels	Photolyse UV (*, ambiante, induite par RC)
Rotationnels	Rayonnement cosmigue
	Photodésorption UV (indirect)
Extension au cas polyatomique	Recombinaison radicalaire

Evolution thermique, sublimation

Introduction

> Newton décompose le spectre de la lumière en 1672, mais l'un des premiers spectre « astrophysique » provient de l'analyse de J. Von Fraunhofer

Premier spectre du soleil reproduit à la main en 1814 par Fraunhofer

Corps noir stellaire idéal

Les premiers objets d'étude : les étoiles

Spica : 23000 K Soleil : 5800 K Antares : 3400K

0 1 2 3 4 5 6 7 8 9 0 1 2 3 O 25000 K B 7500 K F 6000 K G 5000 K K 3500 K M 10000 K A

« Nouveaux » éléments découvert dans l'espace

Raies d'absorption dans le visible

Hélium

Janssen, puis Lockyer, Franckland en 1868 à 587,49 nm chromosphère

Ramsay 1895 isole l'He au labo et observe la même raie -> He

Transition milieu diffus atomique / milieu moléculaire ?

Cinématique des absorptions atomique et moléculaire pas en accord total

Absorption du milieu diffus

Dans le domaine radio

Raies rotationnelle moléculaire dans le spectre radio d'étoiles brillantes ou extragalactique continuum

McClure-Griffiths et al. 2006; Image credit – John Rowe Animations

Differents profils de raies

Effets de la pression (étoiles, atmosphères planétaires)

Spectres dans l'IR lointain

Nébuleuse d'Orion (spectre IR lointain / Herschel/HIFI)

Spectres observés

et information spectroscopique

La connaissance des états physiques indispensable :

le spectre du soleil est dominé par des raies d'espèces ionisées peu abondantes

Conditions physiques:

Etats d'ionisation Densité Température Vitesses Composition

Des conditions parfois très éloignées des mesures directes du laboratoire :

Systèmes isolés

Rayons cosmiques Gamma R	x v.	v. v	I.R.	Micro on Radar	des Télévision Radio
λ 0,00001 mm 0,1 mm	m 10	0 500	1000 nm	1 cm 1	m 1000
1 000 000 000 cm ⁻¹	2		1000 cm-1		0,00001 cm
GRANDE ENERGIE MO	YENNE		FAIBLE	ENERGIE	
Energie (eV) 108 : 106	104 1	0 ² 1	10-2	10-4	10-6 10
	Transitions		Vibrations		Résonance
(con Excitation du noyau	uches interne T éle (coucl	ransitions ctroniques hes extern	moléculaires (nes)	Rotations moléculaire	Magnétique Nucléaire s

Abondance des éléments

Solaire et dans les rayons cosmiques

2 atoms	3 atoms	4 atoms	5 atoms	6 atoms	7 atoma	8 atoms	9 atoms	10 atoms	11 atoms	12 atoms	>12 atoms
Ha	C1*	o-CyH	05*	OPT	Cipi	CH(C)N	0%644	CHUCIN	HOW	p-Gyrls*	HCHN7
AF	CpH	HC3H	Cult	HINGS	ONDICN	HOLDIOCHI	CHICHLON	(0%)(00)	ONLOW	n-ColteCN	Out*
ACI	C20	C ₁ N	C_8	0,9%*	CHIC2H	онусоон	104100	(0504)	сунуасно	IC/H/CN	C _{P3} +
¢./~	C28	0,0	JC php	D+1DN	HC ₀ N	Crei	04,04;04	04,04,040	04,0000004	C_/H_0CH	C80**
04	0%	0,6	o-CiyAg	CH5NC	04,040	CoMe	HOW	01/01/01/0			
CH*	HON	CoHo"	HOON	04,04	04,144	0404040	Catt				
ON	HOD	NPts.	CHI*	CHIEH	0.09%0	AHO(H*	CH4C(0)NH	Č.			
00	H00*	HOON	HC ₂ N	HCs/HI*	насонан	0404040	Get				
00"	HOST	HONK	HC/NC	HC;010	Ger.	CHICOHON	C.;Hs :				
0*	HOC*	HNCO	носни	N44/040	016,NCD 2015	никнок	CH4CH4SH (7)				
86	нуо	incs	HJONH	C ₁ N	HCa0 2017	снуснин	04/44040 7 2017				
HCI	Hall	H000*	R(C)0	HIGHT		CH35H3 2017					
×01	HNC.	HQCC.	HINCH	THEFT							
APR -	HND	HOON	HNGS	a-HyCyO							
NO	мусн	10208	\$24,*	HJCCHH (7)							
NB	MgNC .	Hg0*	H-OOH*	CyN							
NeCl	npf	+901	CH.	HICHON							
04	NyO	OH6"	HOLOJON	SHIJCN 2017							
214	NeCH	C ₂ N ⁻	HNCNH								
80	ocs	PHa	04,0								
80*	802	HEND	NP44*								
34	e-962	HOON	HINCO'								
80	002*	насн	NOONH* 2015								
16	No.	HgOg	04/0 2017								
CI	14,201	CH.									
147	BON	HMMMC									
но	ANC	HOOD									

Spectroscopie de l'hydrogène et atomes hydrogénoïdes

σ Orionis

L'hydrogène est L'élément le plus abondant

Facilement observé dans les régions de formation d'étoiles

En émission lorsque soumis au flux ultraviolet des étoiles

Cred	it: T	errv	Han	coc
				_

Component	Fractional volume	Scale height (pc)	Temperature (K)	Density (atoms/cm ³)	State of hydrogen	Primary observational techniques
Molecular clouds	< 1%	80	10-20	10 ² -10 ⁸	molecular	Radio and infrared molecular emission and absorption lines
Cold Neutral Medium (CNM)	1-5%	100-300	50-100	20-50	neutral atomic	H I 21 cm line absorption
Warm Neutral Medium (WNM)	10-20%	300-400	6000-10000	0.2-0.5	neutral atomic	H I 21 om line emission
Warm Ionized Medium (WIM)	20-50%	1000	8000	0.2-0.5	ionized	Ho emission and pulsar dispersion
H II regions	< 1%	70	8000	10 ² -10 ⁴	ionized	Ho emission and pulsar dispersion
Coronal gas Hot Ionized Medium (HIM)	30-70%	1000-3000	10 ⁸ -10 ⁷	10-4-10-2	ionized (metals also highly ionized)	X-ray emission; absorption lines of highly ionized metals, primarily in the ultraviolet

Application : 1^{ère} raie série Lyman, Balmer, Brackett

Transitions

Hydrogen spectral series								
Wavelength (λ (nm)								
n	Lyman series (n'=1)	Balmer series (n' = 2)	Paschen series (n'=3)	Brackett series (n' = 4)	Pfund series (n' = 5)	Humphreys series (n' = 6)		
2	122							
3	103	656			-	1		
4	97.2	486	1870					
5	94.9	434	1280	4050	6			
6	93.7	410	1090	2630	7460			
7		397	1000	2170	4650	12400		
8	1	8	954	1940	3740	7500		
9				1820	3300	5910		
10		1	1		3040	5130		
11						4670		
∞	91.1	365	820	1460	2280	3280		

4

Brackett- α (H4-5), 2 raies de la serie Pfund (H5-8 and H5-9) et raies de Humphreys identifiées (H6-14 to 31)

Balmer H α

Observations astronomiques

Lenorzer et al. 2002

SpT O-B(e) Brackett, Pfund et raies de Humphreys identifiées

Systèmes hydrogénoïdes : D/H 2.5 - (a) (b) 2.5 20 1.6 H/Q D/H (10 1.0 * Copernicus O HST 0.5 0.5 ∆ IMAPS D FUSE 0.0 0.0 10 100 1000 18.0 18.5 19.0 19.5 20.0 20.5 21.0 Distance (pc) Log N(H I) Wood et al. 2004

Charge du noyau

 $\sigma = 1/\lambda = \Delta E/hc = Z^2 R_u (1/n_1^2 - 1/n_2^2)$

	R _{HI} = 109677,58 cm ⁻¹	\Rightarrow	Lyα = 121.568 nm	
	R _{He II} = 109722,37 cm ⁻¹	\Rightarrow	Lyα = 30,38 nm	
	R _{c vi} = 109732,33 cm ⁻¹		Lyα = 3,375 nm	
	R _{o viii} = 109733,57 cm ⁻¹	\Rightarrow	Lyα = 1,898 nm	
Ionisa	tion			
	$E_1 = E_{\infty} - E_1 = \mu Z^2 e^4 / 2\hbar^2$			
	E _{HI} = 13,6 eV			
	Е _{не II} = 54,4 eV		(E _{Hel} = 24,6eV)	
	E _{c vi} = 1763 eV		(E _{c1} = 11,26eV)	

Hydrogene du point de vue quantiqueEquation de Schrodinger stationnaire $H\Phi = E\Phi$ Hamiltonien classique dans le centre de masse $H_0 = P^2/2\mu + V(r)$ Moment cinétique : $L = r \wedge p$ En quantique : $P => -i \hbar \nabla$ $H_0 = -\hbar^2 \nabla^2/2\mu + V(r)$ Moment cinétique : $L = r \wedge -i\hbar \nabla$ Soit $[-\hbar^2 \nabla^2/2\mu + V(r) - E] \Phi(\underline{r}) = 0$ avec $\underline{r} = (r, \theta, \phi)$ En coordonnées sphériques, séparation radiale et angulaire : $\Phi(r, \theta, \phi) = R_{nl}(r) Y_{lm}(\theta, \phi)$

Recombinaison radiative dans le domaine radio

Densités faibles donc transitions de n très élevés observées (peu de collisions)

$\Phi(\mathbf{r}, \theta, \varphi) = R_{nl}(\mathbf{r})Y_{im}(\theta, \varphi)$
Nombres quantiques :
n = 1,2,3 : nombre quantique principal
l = 0,1,(n – 1) : nombre quantique orbital
−l ≤ m _l ≤ l : m _l nombre quantique magnétique
(composante z du moment orbital, comportement dans un champ magnétique)
Les états atomiques sont repérés par la valeur de n et une lettre associée à l :
I = 01234567 s p d f g h i k (s= sharp / p= principal / d= diffuse / f= fundamental)
Orbitales atomiques 1s; 2s, 2p; 3s, 3p, 3d

Diagramme d'énergie de l'hydrogène	
$L = 0 1 2 3 4 5$ $E = 0 \text{ eV} \qquad \qquad$	
E = 0.85 eV n = 4	
$E = 1.51 \text{ eV} \frac{3s}{2} \frac{3p}{2} \frac{3d}{2} n = 3$	Dégénérescences (sans le spin)
E = 3.4 eV n = 2	niveau I :
	2l+1
	Niveau n
E = 13.6 eV n = 1	n ²

Levées de dégénérescence

Nombres quantiques de spin dans le cas de l'hydrogène : S pour l'électron et i pour le noyau

Le moment angulaire de l'électron est donc : j = l + s

Le moment angulaire total est f = j + i

Structure fine

Des perturbations affectent l'Hamiltonien et des corrections doivent être appliquées, menant à la structure fine de l'hydrogène :

 $H = m_e c^2 + P^2/2m_e + V(r) + W_{cin} + W_{SO} + W_{Darwin}$ Energie de H₀ E_{cin} E_{SO} E_{Darwin}

 Wcin
 : correction relativiste du mouvement de l'e

 Wso
 : couplage spin-orbite (influence du spin sur le moment angulaire)

 W_{Darwin}
 : effet de charge non ponctuelle

W_{SO}

Le moment magnétique de l'électron :

 $\vec{\mu}_{s} = g(q/2m)\vec{s}$ g : facteur de Landé environ -2 $W_{SO} = -\vec{\mu}.\vec{B} = C(r).\vec{l}.\vec{s}$

le moment magnétique d'une particule chargée est prop. au moment angulaire

j(j+1)-l(l+1)- ¾

 $C(r) = 1/(2mc^2) \cdot 1/r \cdot dV/dr = Z\alpha\hbar/2m^2cr^3$

Moment angulaire total
$$\vec{j}^2 = (\vec{l} + \vec{s})^2 \Rightarrow \vec{l}^2 = 1/2 . (\vec{j}^2 - \vec{l}^2 - \vec{s}^2)$$

 $W_{SO} = Z\alpha\hbar/4m^2c$. $<\Phi|(\vec{j}^2 - \vec{s}^2) 1/t^3|\Phi>$

Հam_ec)³ / ħ²n³ | (I+1/2)(I+1

 $E_{SO} = (m_e c^2/2).(Z\alpha)^4/2n^3.[j(j+1)-l(l+1)-\frac{3}{4}] / [l(l+1/2)(l+1)]$

 $E_{SO} = -E_n^{(0)} (Z\alpha)^2 / 2n.[j(j+1)-l(l+1)-\frac{3}{4}] / [l(l+1/2)(l+1)] \quad l \neq 0$

$\rm W_{cin}$

La relation relativiste entre l'énergie et la quantité de mouvement d'une particule de masse m_e est :

W_{Darwin}

Délocalisation de l'e- entraine une correction de l'énergie potentielle d'interaction:

 $E_{Darwin} = (m_e c^2/2).(Z\alpha)^4/n^3 = -E_n^{(0)} (Z\alpha)^2/n$ I=0

 $\mathsf{E}_{\mathsf{SO}} = -\mathsf{E}_{\mathsf{n}}^{(0)} (\mathsf{Z}\alpha)^2 / 2\mathsf{n} [\mathsf{j}(\mathsf{j}+1) - \mathsf{l}(\mathsf{l}+1) - \frac{3}{4}] / [\mathsf{l}(\mathsf{l}+1/2)(\mathsf{l}+1)] \quad \mathsf{l} \neq 0$

 $E_{cin} = E_n^{(0)} (Z\alpha/n)^2 . [n/(l+1/2) - 3/4]$

La somme des termes se simplifie pour tout l, avec s = 1/2 et j = $1 \pm 1/2$

 $E_{SF} = E_{cin} + E_{SO} + E_{Darwin} = E_n^{(0)} (Z\alpha/n)^2 [n/(j+1/2) - 3/4]$

 $E_n^{(0)} = -(mc^2/2)(Z\alpha)^2/n^2$

Structure hyperfine

Le moment angulaire total incluant le spin nucléaire est f = j + i

Pour H, i=1/2 soit $f = j \pm 1/2$

L'état fondamental de H, avec j=1/2 possède donc deux états f = 0 ou 1

Etat métastable (= transition interdite) 2s_{1/2} dans les nébuleuses

1 Tiu 1.65 0.33 0.55 0.81 0.52 0.54	⁰ / ₁₀ (km s ⁻¹) -82.1 -71.4 -54.9 -30.4	o, (km s ⁻¹) 3.6 4.2 6.5	r; (km s ⁻¹) 	\$1;=1 (km s ⁻¹)	(K)	$[K (km s^{-1})^{-3}]$	(K)	(K)	$\begin{array}{c} T_{\pi}(\tau_i) \\ (K) \end{array}$	$\begin{array}{c} \mathcal{T}_{n}(\mathbf{r}_{i-1}) \\ (\mathbf{K}) \end{array}$
1.65 0.33 0.55 0.81 0.52 0.54	-82.1 -71.4 -54.9 -30.4	3.6 4.2 6.5		+1+	100			13.2.4	1000	
0.33 0.55 0.81 0.52 0.54	-71.4 -54.9 -30.4	4.2 6.5	1111					1.1.1		
0.55 0.81 0.52 0.54	-54.9	6.5			10.0	111		1.11		111
0.81 0.52 0.54	-30.4									
0.52		2.0								
0.54	-24.5	21.3								
	-5.8	3.8			1.11					
1.00	4.3	3.1					Sec. 1	Sec.		
0.19	18.8	2.9				2.22		100	1.000	
0.32	37.5	3.5	100		1000			Sec. 1		Carlos -
1.49	-43.3	3.8	-45.8	-36.7	25.33	65.90	63.24	80.83	-1.43	18.34
0.87	-40.3	1.5	-45.8	-36.7	25.33	65.90	63.24	80.83	-1.43	18.34
1.26	-31.3	2.6	-33.4	28.5	33.37	61.77	62.20	60.45	0.10	34.58
1.12	-17.2	3.0	-20.3	-13.7	52.99	52.99	56.27	37.51	1.23	66.06
0.32	-45	3.8	-7.9	-2.1	6.17	28.33	52.14	28.16	4.12	-16.23
0.17	2.2	2.6	0.4	7.8	18.27	47.65	22.00	\$3.55	-3.10	4.76
	1.49 0.87 1.26 1.12 0.32 0.17	1.49 -43.3 0.87 -40.3 1.26 -31.3 1.12 -17.2 0.32 -4.5 0.17 2.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

e- indépendants dans un champ central, séparation en N equations :

Electron i :

 $(-\hbar^2 \nabla_i^2/2\mu + V_c(r_i))\Psi_i(r_i) = E\Psi_i(r_i)$

 $\Psi = \Psi_1(r_1) \Psi_2(r_2) \dots \Psi_N(r_N) \text{ avec } Q_i = (n_i, l_i, ml_i, ms_i)$ Nrj dépend de la configuration $(n_1 l_1)(n_2 l_2) \dots (n_n l_n)$

Atome a deux e- , exemple de He : Modèle particules indépendantes, négligeant la répulsion entre électrons fct d'onde spatiale (Ψ):

$$\Psi_{_{1,2}}(r_{1,r_{2}}) = \Psi_{_{Q_{1}}}(r_{1})\Psi_{_{Q_{2}}}(r_{2})$$
 avec Q=(n,l,ml,ms)

Principe d'exclusion de Pauli :

Deux e- ne peuvent avoir le même jeu de nombres quantiques

Atomes à n électrons :

e- indépendants se mouvant dans un champ central :

Energies dépendent de n et de l (potentiel n'est plus en 1/r) Plus de dégénérescence accidentelle comme dans H

 $\Psi_{\rm 1,2}$ = même énergie que $\Psi_{\rm 2,1}$ = $\Psi_{\rm Q2}(r1)\Psi_{\rm Q1}(r2)$

Combinaison linéaire intelligente des fcts d'onde...

 $\Psi \pm = 1/\sqrt{2} \left[\Psi_{Q1}(r1) \Psi_{Q2}(r2) \pm \Psi_{Q2}(r1) \Psi_{Q1}(r2) \right]$ Il faut que si Q1=Q2 alors $\Psi = 0 \implies \Psi$ -

Principe de Pauli plus général :

Fct d'onde antisymétrique à l'échange des électrons

II faut que Q1≠Q2

Fonction d'onde de spin (Φ) des deux électrons (4 combinaisons)

Nous formons des combinaisons linéaire des fonctions d'onde pour qu'elles aient une symétrie bien définie par rapport à un échange des électrons.

 $\Phi \pm (1,2) = - \begin{bmatrix} \varphi \uparrow (1)\varphi \uparrow (2) \\ 1/\sqrt{2} \left[\varphi \uparrow (1)\varphi \downarrow (2) + \varphi \downarrow (1)\varphi \uparrow (2) \right] & \text{état tripl} \\ \varphi \downarrow (1)\varphi \downarrow (2) & \text{symétriq} \\ 1/\sqrt{2} \left[\varphi \uparrow (1)\varphi \downarrow (2) - \varphi \downarrow (1)\varphi \uparrow (2) \right] & \text{état sing} \end{bmatrix}$

état triplet, symétrique : Φ(2,1)=Φ(1,2)

état singulet antisymétrique : $\Phi(2,1)=-\Phi(1,2)$ $s1 = s2 = 1/2 \implies S=0,1$ (total spin quantum number)

S = | s1 ± s2 | = 0, Ms=0 ou 1 Ms=-1,0,1

Fonction d'onde de spin (Φ) des deux électrons (4 combinaisons)

		S	Ms	
Φ± (1,2) =	⁻	1 1 1	1 0 -1	Triplet
	_ 1/√2[0	0	Singlet

Conséquence sur le spectre de l'He :

 Ψ = fct d'onde de spin . fct d'onde spatiale doit être antisymetrique

S=0 spin singulet antisymetrique (para) => fct spatiale symetrique S=1 spin triplet symétrique (ortho) => fct spatiale antisymetrique

Pas de transition entre les deux états de spin

Application He en configuration (1s)(nl)

