EL5 : Atomes, Molécules, Solides

J. Belushi 2008

ISMO

"Minéralogie" des Silicates

Olivines (Mg_{2x}Fe_{2-2x}SiO₄)

Mg₂SiO₄ Forsterite Fe₂SiO₄Fayalite

Pyroxenes (Mg_xFe_{1-x}SiO₃)

Mg₂Si₂O₆ Enstatite Fe₂Si₂O₆ Ferrosilite (hypersthene) CaMgSi₂O₆ Diopside CaFeSi₂O₆ Hedenbergite

Silicates dans les disques

Meeus et al. 2001

Minéralogie : La poussière dans les Herbig Ae Be

Poussière « carbonée »

(nano-)diamants

Hill, Jones & d'Hendecourt, A&A 1998

Candidat à une raie à 21 cm

Selon spectro FTIR nanodiamants meteorite « Orgueil »

Observations des (nano-)diamants

Expériences diamantoïdes

Des analogues de ces espèces contenant environ 130 atomes de C (e.g., $C_{136}H_{104}$) montrent un rapport d'intensitédes bandes à 3.53 et 3.43 μ m proche de celles observées dans le MIS

	Star-forming reg	ions	Diffuse/translucent ISM			
	Em.	Abs.	Em.	Abs.		
C ⁺ ₆₀	$1 \times 10^{-4*}$	-	3 ×10 ^{-5*†}	1-1.8 ×10-5*		
C60	$0.4 - 5.6 \times 10^{-4**}$	-	0.5-6.4 ×10-5*			
* Fro	m Berné et al. (2013)	; ** Fron	n Castellanos et al	(2014);		
				Berné+201		

Carbones amorphes hydrogénés a-C:H / HAC

- Observés initialement à 3.4 microns en abs de source du GC

Allen & Wickramasinghe, Nature 294, 239, 1981
Allen & Wickramasinghe, Nature 294, 239, 1981
Associés aux modes d'élongation sp3 CH3 and CH2
Interstellar amorphous carbon dust with chemisorbed CH2 and CH3 groups may be a significant component of interstellar dust in diffuse clouds. »
Duley & Williams, MNRAS 205, 67, 1983
De nombreuses experiences/observations pour contraindre leur origine
Mennella et al. 2002, Pendleton & Allamandola 2002, Chiar et al. 2002, Geballe et al. 1998, Tielens et al. 1996, Sandford et al. 1995, Pendleton et al. 1994, Sandford et al. 1994, Sandford et al. 1991, Ehrenfreund et al. 1991,

et al. 1995, Pendleton et al. 1994, Sandford et al. 1991, Ehrenfreund et al. 1991, McFadzean et al. 1989, Butchart et al. 1986, Jones et al. 1983

Abondance d'après les élongations CH

e.g. Sandford et al. ApJ 1991, Pendleton et al. ApJ 1994, Sandford et al. ApJ 1995

- 2.6% to 35% du carbone cosmique pour Sandford 1991
- >2.5% et >4% GC Pendleton 1994 basé sur des alkanes
- Duley (1994 & 1998) 72-97ppm basé sur des HAC exp. (avec H/C < alkanes) implicant 20-30% du carbone disponible</p>

Ajustement des signatures d'absorption de l'ISM

Emission : milieu diffus et interfaces

Aromatic Infrared Bands (AIB), Very Small Grains (VSG), Big Grains (BG)

Émission après absorption d'un photon stellaire visible-UV (hv) par un grain

Emission en fct de la taille

Cet ensemble reprocesse la moitié de l'énergie émise par les étoiles

- BG :

FIR associé aux silicates/grains carbonés de relative grande taille : 10 nm < a < 100 nm

- VSG :

Mid-IR emission requière grains 1nm < a < 10nm

- AIB :

Caractère aromatique en spectroscopie, mais pas d'identification.

Emet par chauffage transitoire après absorption d'un photon VUV.

PAHs

10 12 14

Emission des AIBs (l'hypothèse PAHs)

Accord avec des analogues de laboratoire chuaffés thermiquement à différentes températures

Competition entre différents mécanismes d'émission, dépendants de la taille ?

Mécanismes concomittants (modification, emission, Stellaire/ISRF) encore à contraindre.

Manteaux de glace

Observer la glace : constantes optiques

Exemple: Glace d'eau Ih – 266K

• 100 Å d'épaisseur ?

• Elles favorisent une chimie impossible ou bcp moins efficace que dans la phase gazeuse.

 Elles influencent le transfert de rayonnement.

O >

Protoétoiles/Disques

Les plus riches en glaces

 Les massives observées en premier

 Interaction source/envelope à l'interface

Réactions de surface – naissance et distribution des glaces Epaisseur des manteaux de glace: Taux de croissance en masse: dm/dt=S* π *a²*n*<v>*<m> <v> = (8kT / π m)^{1/2} Taux de croissance en rayon: da/dt=(dm/dt)/(4* π *a²* ρ) da/dt=S*n*<v>*<m>/(4* ρ)

Croissance des manteaux indépendente du rayon du grain

Glaces mesurées par simulations de laboratoire

Section efficace d'absorption intégrée A

Table 3. Assignments and band strengths of H₂O ice.

Label	Mode	Position cm ⁻¹	Wavelength ,um	$\frac{T}{K}$		р g cm ⁻³	A cm molec ⁻¹	Connected A cm molec $^{-1}$ considering $\rho' = 0.87$ g cm $^{-3}$	Reference
va	Libration	360	13.2	10	1.32	1	2.8×10^{-17}	3.2×10^{-17}	Hudgins et al. 1993
		750°	13.3	10			2.6×10^{-17}	2.8×10^{-17}	d'Hendecourt & Allamandola 1986
		260*	13.2	14	14	*	3.10×10^{-10}	3.30×10^{-17}	Gerskines et al. 1995
		763	13.1	25	1.29	1.10	2.5×10^{-12}	3.2 × 10 ⁻¹⁷	Mastrapa et al. 2009
42	Bend.	1657	6.035	10	1.32	1	1.0×10^{-10}	1.1×10^{-17}	Hudgins et al. 1993
		1670*	5.988	10		÷.	8.40 × 10 ⁻¹⁸	9.1 × 10 ⁻⁵⁸	d'Hendecourt & Allemandola 1986
		1660*	6.004	14			1.20×10^{-17}	1.30 × 10 ⁻¹⁷	Gerakines et al. 1995
		1666	6.002	25	1.29	1.10	9.5 × 10 ⁻¹⁸	1.2 × 10 ⁻¹⁷	Mastrana et al. 2009
		1659	6.028	25	1.27 ± 0.02	0.87 ± 0.03	9.0 × 10 ⁻¹⁰	9.0 × 10 ⁻¹⁸	This work
12 + 14		2202	4.541	10	1.32	1	3.3×10^{-10}	3.8×10^{-19}	Hadgins et al. 1993
		2209	4.527	25	1.29	1.10	4.3×10^{-15}	5.4×10^{-18}	Mastrapa et al. 2009
Ni .	5-920	3298	3.032	10	1.32	1	1.7×10^{-18}	2.0×10^{-16}	Hadgins et al. 1993.
173	a-str.	3257	3.070	10	1.26	0.94	2.0×10^{-16}	2.2×10^{-10}	Hagen et al. 1981
		3275*	3.053	10	1		2.0×10^{-18}	2.2×10^{-16}	d'Hendecourt & Allamandola 1986
		3280*	3.049	14			2.0×10^{-10}	2.2×10^{-10}	Gerakines et al. 1995
		3285	3.044	25	1.29	1.1	1.9×10^{-10}	2.4×10^{-10}	Mastrapa et al. 2009
		3297	3.033	25	1.27 ± 0.02	0.87 ± 0.03	1.5×10^{-10}	1.5×10^{-10}	This work

"d'Hendecourt & Allamandola (1986) and Gerakines et al. (1995) performed measurements using the band strength of the OH-stretching mode of 2×10^{-18} cm molecule⁻¹ determined by Hagen et al. (1981) as a reference. So, we consider a density of $\rho = 0.94$ g cm⁻³ used by Hagen et al. (1981) to scale the band strengths found by d'Hendecourt & Allamandola (1986) and Gerakines et al. (1995) using the formula (6).

Bouilloud et al. 2015

Variations des bandes d'absorption

50

100

Schmitt et al. 1985