EL5 : Atomes, Molécules, Solides

I. Belushi 2008

Epaisseur des manteaux de glace:

Taux de croissance en masse: dm/dt=S* π *a²*n*<v>*<m>

 $<v> = (8kT / \pi m)^{1/2}$

Taux de croissance en rayon: da/dt=(dm/dt)/($4^{*}\pi^{*}a^{2*}\rho$)

 $da/dt=S^n^{<v>*}<m>/(4^*\rho)$

Croissance des manteaux indépendente du rayon du grain

Application

Manteaux de glace interstellaire

On considère la formation de manteaux de glaces à la surface des grains de poussière interstellaire, en prenant pour hypothèse de départ que ces grains sont constitués de silicates, sous forme d'une olivine de composition MgFeSiO4, et que les atomes de silicium disponibles se retrouvent majoritairement bloqués dans cette phase solide.

1. Les molécules d'eau se forment par réaction de surface sur les grains de poussières, lorsque les atomes de la phase gazeuse sont accrétés par collision avec ces grains. Expliquez brièvement pourquoi on s'attend à la formation d'un manteau de glace d'épaisseur constante, indépendante de la taille initiale du grain.

Application

Le rayon moyen d'un grain interstellaire, supposé sphérique, est < a >= 0.1µm. On donne la densité de l'olivine p(olivine) = 3.22g/cm3, de la glace p(glace) = 0.9g/cm3, et les abondances cosmiques des différents éléments dans la table 1

TABLE 1 - Abondances élémentaires interstellaires pour 106 atomes d'hydrogène

Element	Masse atomique(u)	10 ⁶ [X/H
He	4	$7.8 \ 10^4$
C	12	288.4
N	14	79.4
0	16	575.4
Mg	24	41.7
Si	28	40.7
S	34	18.2
Fe	56	34.7

 En admettant que les atomes d'oxygène disponibles forment la molécule H2O et donc de la glace par réaction de surface sur un de ces grains silicatés de rayon < a >, quelle est l'épaisseur attendue des manteaux de glace ?
 Explicitez votre démarche. 3. La distribution de taille des grains de silicates prend en fait la forme donnée dans la figure 5. On suppose que l'épaisseur des manteaux de glace ne varie pas avec la taille initiale du cœur réfractaire du grain et qu'elle prend la valeur calculée à la question précédente. Pour les deux tailles extrêmes de cette distribution dans le cas des silicates (amin = 0.0004 μ m et amax = 0.3 μ m), quel est le rapport attendu du volume de glace par rapport à celui des silicates ?

4. Densités de colonne des composantes de H2O, CO2 et des silicates, dont les caractéristiques sont données à la table 2. Quel est le rapport CO2/H2O?

N(H₂O) = $1.4 \times 300 / 20 \times 10(-17) = 2.1 \times 10(18) \text{ cm}^{-2}$ N(CO₂) = $1.8 \times 20 / 7.6 \times 10(-17) = 4.7 \times 10(17) \text{ cm}^{-2} \Rightarrow \text{N(CO}_2) \approx 0.22 \text{ N(H}_2\text{O})$ N(Silicates) = $1.6 \times 100 / 16 \times 10(-17) = 10(18) \text{ cm}^{-2}$

Espèce	Mode de vibration	Longueur d'onde (µm)	Largeur à mi hauteur $\Delta \nu (cm^{-1})$	Epaisseur optique τ	A (10 ⁻¹⁷ cm/groupement)
H_2O	Elongation OH	3.05	300	1.4	20/H ₂ O
CO ₂	Elongation antisymétrique	4.27	20	1.8	7.6/CO ₂
Silicates	Elongation SiO	9.7	100	1.6	16/MgFeSiO ₄

Section efficace d'absorption intégrée A

Table 3. Assignments and band strengths of H₂O ice.

Label	Mode	Position cm ⁻¹	Wavelength µm	$\frac{T}{K}$		g cm ⁻³	A cm molec ⁻¹	Connected A cm molec ⁻¹ considering $\rho' = 0.87$ g cm ⁻³	Reference
178	Libration	360	13.2	10	1.32	1	2.8×10^{-17}	3.2×10^{-17}	Hudgins et al. 1993
		750*	13.3	10		*	2.6×10^{-17}	2.8×10^{-17}	d'Hendecourt &
		260*	13.2	14			3.10×10^{-10}	3.30×10^{-17}	Gerskines et al. 1995
		763	13.1	25	1.29	1.10	2.5×10^{-12}	3.2 × 10 ⁻²⁷	Mastrana et al. 2009
10	Bend.	1657	6.035	10	1.32	1	1.0×10^{-10}	1.1×10^{-17}	Hadgins et al. 2993
522		1670*	5.988	10		÷	8.40×10^{-10}	9.1×10^{-18}	d'Hendecourt & Allemandola 1986
		3660*	6.004	14			1.20×10^{-17}	1.30×10^{-17}	Gerakines et al. 1995
		1666	6.002	25	1.29	1.10	9.5×10^{-10}	1.2×10^{-17}	Mastrapa et al. 2009
		1659	6.028	25	1.27 ± 0.02	0.87 ± 0.03	9.0×10^{-10}	9.0 × 10 ⁻¹⁸	This work
10 # 10		2202	4.541	10	1.32	1	3.3×10^{-18}	3.8 × 10 ⁻¹⁹	Hadgins et al. 1993
		2209	4.527	25	1.29	1.10	4.3×10^{-15}	5.4×10^{-18}	Mastrapa et al. 2009
N1	5-92	3298	3.032	10	1.32	1	1.7×10^{-18}	2.0×10^{-16}	Hadgins et al. 1993.
49	a-str.	3257	3.070	10	1.26	0.94	2.0×10^{-16}	2.2×10^{-10}	Hagen et al. 1981
		3275*	3.053	10	1		2.0×10^{-16}	2.2×10^{-36}	d'Hendecourt & Allamandola 1986
		3280*	3.049	14		A	2.0×10^{-10}	2.2×10^{-10}	Gerakines et al. 1995
		3285	3.044	25	1.29	1.1	1.9×10^{-10}	2.4×10^{-10}	Mastrapa et al. 2009
		3297	3.033	25	1.27 ± 0.02	0.87 ± 0.03	1.5×10^{-10}	1.5×10^{-10}	This work

"d'Hendecourt & Allamandola (1986) and Genkines et al. (1995) performed measurements using the band strength of the OH-stretching mode of 2×10^{-16} cm molecule⁻¹ determined by Hagen et al. (1981) as a reference. So, we consider a density of $\rho = 0.94$ g cm⁻³ used by Hagen et al. (1981) to scale the band strengths found by d'Hendecourt & Allamandola (1986) and Gerakines et al. (1995) using the formula (6).

Variations des bandes d'absorption

Absorption : calcul de la colonne densité

Evolution de la phase avec l'irradiation des CRs

De nombreuses autres glaces détectées par comparaison avec les données de laboratoire.

Pontoppidan et al. 2008, ApJ 678, 1005 Mennella et al. 2006, ApJ 643, 923 Bergin et al. 2005, ApJ 627, L33

Spectroscopie des glaces

Profils des bandes - (i) glaces polaires versus apolaires

 les largeurs de bandes et les positions mesurées au laboratoire changent quand mélangées avec des glaces polaires, traduisant des interactions dans le solide.

 Initiallement tracé par le profil de la glace de CO car observable du sol.

e.g. Pontopiddan et al. 2003, A&A 408, 981; Chiar et al. 1995, ApJ 455, 234. Palumbo & Strazzulla 1993, A&A 269, 568; Tielens et al 1991, ApJ 381, 181; Sandford et al. 1988, ApJ 329, 498;

Profils des bandes – (ii) complexes intermoleculaires

 Incompatible avec les spectres de laboratoire sur la base des abondances observées mélangées dans la même glace.

Profils de bandes– (iii) diffusion et hydrate d'ammoniac

 Comparaison de l'élongation OH de la glace d'eau cristalline :
 Lab

- OH-IR (Manteau de glace pure)
- GL2136 (Protoétoile massive)

Diffusion + abs. additionnelle
Brooke et al. 1999, ApJ 517,883; Smith et al. 1989, ApJ 344, 413

Pliage dans le plan
Levée de dégénérescence, le mode de pliage se sépare en deux composantes.
Dartois et al. 1999, A&A 351, 1066
Pliage hors plan
Jérénérescence de dégénérescence, le mode de pliage se sépare en deux composantes.
Séparation confirmée par le calcul théorique.
Klotz et al. 2004, A&A 416, 801

Profils des bandes – complexes intermoléculaires

Autres modes observés ou limites sup

Données Spitzer => $NH_3/H_2O = 5.5\% \pm 2.0\%$

Profils de bandes- (iv) l'influence de la croissance des grains

- Modelisation du profil de la glace de CO dans un grain mélange glace silicates en utilisant un code DDA Draine & Flatau
- X = 2 π <r> / λ , où λ = 4.27 μ m, coefficient d'extinction volumique

Profils de bandes- (iv) l'influence de la croissance des grains

Mesuré au laboratoire en utilisant une cellule collisionnelle.

Interactions gaz/grain et processus énergétiques
Réactions de surface
Rayonnement cosmique
Photolyse UV (*, ambiante, induite par RC)
Photodésorption UV (indirect)
Recombinaison radicalaire
Evolution thermique, sublimation

e.g. Boogert et al. 2008

CH₃OH très variable

Réactions de surface

Ne permettent pas d'expliquer toutes les glaces

Silicates dans le DISM

Silicates dans l'ISM sont presque 100% "amorphes" (<2.2% Kemper et al. 2004 + erratum)

Alors qu'ils sont injectés en partie crystallins

« 0.1-5.0 GeV heavy-ion cosmic rays can rapidly (~70 Myr) amorphize crystalline silicate »

Rayons cosmiques peuvent induire de structure	e des modifications
Percus ASW Si substrute H ₂ O deposit at 15 K CO deposit at 15 K CO definition at 26 K	 structuration de l'ASW poreuse à compacte
200 ke∨ H ⁺ H ⁺ H ₂ O deposit at 15 K Ion irradiation at 15 K CO deposit at 15 K CO diffusion at 26 K	 Change la reactivité pour les réactions de surface : reduit la surface dispo nature des sites
0.00 0.00	time (year) 1 0 4 0x10 ⁶ (6 0x10 ⁷ 6 5x10 ⁷ 7 0x10 ⁷ 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Implication : mélange radial dans les disques ?

Silicates cristallins (Tform. ≈1000K) mélangés avec des glaces (Tsubl. ≈100K)

Mélange radial, reprocessing, rayons X

Approcher l'irradiation des rayons cosmiques d'analogues au labo

Production d 'a-C:H au laboratoire

Comparé aux spectres ISO / VLT-ISAAC /Spitzer

« Exacte » reproduction des spectres observés (C-H élong. & def.) vers IRS7 (centre galactique, milieu diffus)

Explorer exp.

La gamme complète des sections efficaces des CR

Echapillon	. her	(MAT)	Expériment	New York (Mark 1997)	S_h/S_r	R ₂	H	Ques contracts	(MAX mg -1 a -1)	Terral Decemb	PLANT IL	Fernas DMN mar-1
+CE1	10.1	0.7	Catato 2000	T-00 000-T	1.1 10-1	1.40*	- C.F	3 1011	1.1077	0.6	4 1875	2.4 1014
a-C(0.1	But	0.2	Catana 2009	1,665	5.4 10-2	0.553*	10.04	6.3974	1 1011	1.9	4 10 ¹³	7.5 1019
a-CHI	Artes	0.4	Catane 2009	5.001	3.8 10-1	0.563*	10.6	6 10 ²¹	3 10 ¹²	0.9	2 10 ²⁵	S 50 ¹⁰
a-CHI1	10.0	. 30	Tamlein 2009	4.540.30-1	5.5-20-4	30.80	N2.	1.4 1011	6.4 227	4.0	2.1 1075	8-8 1077
6-CR1	12.1	35	Tandens 2000	4.545.33-1	3.3 20-4	10110	m 10	0.7-1.3 1019	3.3-5.5 10 ¹⁰	6.5	2.0 10 ¹⁴	8.5 1014
#-C#11	11.21	- 20	Tandens 2000	3,207 3011	5.9 20-1	296.48	m 11	1.2-1.9 1010	3.9-6.1 10 ²¹⁷	5.7	3.0 1014	8.7 10 ¹⁰
a-CHI	C2+	90	Tassien 2000	2.07	5.4 10-4	313.87	14.4	3.3-12 1010	8.8-25 10 ²⁰	15.7	2.3 10/1	4.8 10 ¹³
a CHI	C++	- 50	Tarshess 2009	3.274	3.7 10-1	82.66	-in 13	1.5.7.5 1010	0.5-3.5 10 ¹¹	1.3	8.0 10 ¹⁴	3.7 1010
a-CH1	35-1-	- 85	Tatalaria 2008	15.01	7.8 30-8	36.07		0.5-2.5 1017	4.8-3.7 10 ¹¹	3.5	1.0 10 ¹⁴	3.4 1015
s-CH1	NP+	. 100	Tendem 2009	46.94	1.6.10-3	24.01	14.6	1.2.30**	5.6 1071	1.2	5.4.107.9	2.5 1013
s-CHL	1100	140	Tandem 2000	10.35	3.3 10-5	25.39	14.6	3.6-3.6 10*	1.4-3.2 10 ¹⁰	6.3	8.9 1012	4.4 10 ¹⁴
+CH2	Helph	20	Tandem 2000	3:207 30-7	1511	296.48	10.2	0.0-1.3 1017	2.9-4.2 10 ¹⁰	4.5	1.0 10 ¹⁰	6.0 10 ¹⁴
a-C#2	CP+	95	Taudem 2010	2.07	3.4 33 - 4	213.67	AL 2	2.3-4.5 1012	4.6-8.3 10 ¹¹¹	1.4	6.0.1014	5.8 5015
a-CH2	110+	280	Taudem 2000	80.33	3.5 10-7	25.39	in 1	1.9-2.5 10 ⁴	17.2.2 30 ¹⁰	2.3	1.4 1010	1.2 1015
Rule	10.1	0.2	Catate 2017	1.909 21-1	1.0 10-0	1.317	in 1.	2.5 2012	2.5 3010	0.2	2.10 ¹¹	8.2 0010
Suit	Ha*	0.2	Catarie 2009.	1.548	1.0 10 - 2	0.704*	~ 0.8	1.1910	2 10/1	0.8	3.4 1011	5.4 1015
Sule	10.1	30	Tasslern 2000	4.109 10 ⁻¹	4.8 10-1	758.41	At a low	5.3-9.7 1011	224.0 1010	4.0	1.1 10 ²⁴	4.6 10 ¹⁰
Sale	C2+	58	Tandem 2009	2,884	3.3 10**	64.83	10.4	2357 1011	6.6-15 1010	3.8	2.7 10 ¹⁴	7.8 1014
Sulw	80.11	85	Taodemi 2009	13.7	7.5 21-4	25.51	14.5	0.9-2.3 1017	1.2.3.2 1011	1.4	T.# 10 ^{4.0}	3.3 10 ¹⁰
Sula	51-	300	Tanders 2009	294.325	1.0 10 ⁻²	19.95	10.3	1.2 10 ¹⁰	4.7.1011	0.6	2.5 10 ¹²	8.9 1014
											Godard et	al. 2011

Les rayons cosmiques avec des énergies de 10 à 100 MeV/u ionisent H₂ et génèrent des électrons avec une énergie moyenne autour de 30 eV.

■Ces électrons secondaires dissocient et ionisent H₂, qui en se désexcitant émettent des photons VUV

Les photons UV induits par les rayons cosmiques produisent la photochimie dans les cœurs denses, pas la lumière stellaire ni l'ISRF.

 Les solides volatiles autours des étoiles de faible/forte masse ont toutes les raisons d'être les mêmes / l'environnement radiatif (pas temporel)

Si le nuage parent est perturbé par l'étoile, alors elle joue un rôle important

Photons UV versus rayons cosmiques

	irradiation UV	Rayons cosmiques
Nuages denses	eV.cm ² .s ⁻¹	eV.cm ² .s ⁻¹
$N_{\rm H} \simeq 10^3 {\rm cm}^{-3}$	10 ⁴ -10 ⁵	10 ³

E(UV) / E(Rayonnement cosmique) ~ 10 -100

• Ce rapport est relativement constant car l'UV est induit par les rayons cosmiques.

• La nature de l'interaction est différente et peu représenter une différence pour des réactions avec un seuil au dessus de la limite UV.

Peut-on voir la différence d'effet des cosmigues / UV ?

Rendements de formation sont différents (ex. pour HCOO-), mais vision du labo pour analyser l'ISM ou les glaces sont mélangées.

A hautes doses, les photons UV plus spécifiques que les ions

UV et photodesorption

Les mesures dépendantes de la longueur d'onde montrent que le processus est induit par les transitions électroniques.

UV et photodesorption

Temps d'accrétion de la phase gaz... ~10⁹ ans / n_µ : tout condense

Photodésorption peut (ré)injecter des espèces dans le gaz (aussi les rayons cosmigues et le chauffage stellaire)

Premières mesures en labo : efficacité de désorption (CO et CO₂) environ 10(-3) molécule / photon UV incident

Oberg et al. 2007, ApJ 662, L23; Oberg et al. 2008

efficacité plus haute mesurée par d'autres 3.5x10(-2)

Munoz-Caro et al. 2010

Seules les premières couches affectées, avec un rendement proche de l'unité pour les vrais volatiles.

Le reste de l'énergie sert à la photochimie dans le grain

Recombinaison radicalaire et désorption explosive.

Le passage d'un rayon cosmigue (lourd, comme le Fe) peu déclencher des réactions en avalanche.

Libère les radicaux / ions dans la glace qui « stockent » de l'énergie.

Evolution moléculaire car ainsi cela rempli la phase gaz avec des espèces plus complexes.

D'Hendecourt et al. 1982 A&A 109, 12: Léger 1987, IAUS 120, 539

Réactions activées thermiquement ou spontanées Réorganisation des matrices glacées sous l'effet de l'évolution des étoiles enfouies. La mobilité et la diffusion des espèces engendre de nouvelles réactions Réactions de polymerisation ? H₂CO + NH₃ -(CH₂-O)- (POM) Schutte et al 1993, loarus 104,118 Réactivité de surface à basse température

e.G pour former OCN⁻ depuis HNCO / NH₃

Conclusions provisoires

- Les solides representent les premières surfaces de l'univers, concentrant les espèces en grande abondance.
- Ils initient une chimie impossible ou moins efficace que dans la phase gazeuse
- Ils influencent le transfert de rayonnement
- Les profils des bandes contiennent une grande quantité d'information (structure, composition ...)
- Les processus d'évolution sont concomitants, et pas à mettre en opposition (surface, UV, rayons cosmiques, effets thermiques ...)
- importance relative dans un milieu donné ?
- Durée d'exposition et temps caractéristiques de survie ?
- Volume de la Galaxie affecté ?

Nébuleuse bipolaire

1. Pour l'état fondamental ${}^{2}S_{1/2}$ et pour l'état excité ${}^{2}P_{1/2}$, ${}^{2}P_{3/2}$.

2. Il s'agit du bore.

3. On mesure $e^{-\tau_{9.7}}$ directement sur la figure, comme rapport de la profondeur de la bande d'absorption au continuum, et on trouve $\tau_{9.7} \simeq -\ln(7.7/8.6) \simeq 0.1$ soit $A_V \simeq 1.85$

4. Il existe un seuil en A_V de l'ordre de 3 pour que la glace résiste au rayonnement et soit observable.

5. On a

$$N = \frac{\int \tau d\nu}{A} \simeq \frac{\tau_{9.7} \Delta \nu}{A} = 6.25 \times 10^{16} \, \text{cm}^{-2}$$

6. On a $d\tau = \sigma n_q$, donc

$$au(r_{
m H})=\int_{r_{
m M}}^{r_{
m H}}Q_e\pi a^2n_g(r){
m d}r$$

7. La luminosité apparente de l'étoile vue par le grain au point H est

$$L_H = \frac{L_\star}{4\pi r_{\rm H}^2} e^{-\tau (r_{\rm H})}$$

8. On a

$$\frac{I_{\rm H}}{I_{\rm H'}} = \frac{G(i)}{G(\pi - i)} = \left[\frac{1 + g^2 + \sqrt{2}g}{1 + g^2 - \sqrt{2}g}\right]^{3/2} \simeq 6.85$$

9. On observe une forte asymétrie pour les flots inclinés sur la ligne de visée, la partie dirigée vers l'observateur apparaissant beaucoup plus brillante. 10. On a

$$\mathrm{d}M = \mathrm{d}S\mathrm{d}rm_{\mathrm{H}}n_{\mathrm{H}} \simeq 2\pi \left[1 - \left(1 - \frac{\theta^2}{2}\right)\right]r^2\mathrm{d}rm_{\mathrm{H}}n_{\mathrm{H}} = \pi \theta^2 r^2\mathrm{d}rm_{\mathrm{H}}n_{\mathrm{H}}$$

11. La perte de masse est

$$\dot{M}=rac{\mathrm{d}M}{\mathrm{d}t}=\pi heta^2r^2m_\mathrm{H}n_\mathrm{H}V_f$$

12. \dot{M} et V_f étant des constantes, on a

$$n_X(r) = rac{f_X \dot{M}}{\pi heta^2 m_{
m H} V_f} imes rac{1}{r^2} = rac{n_0}{r^2}$$

13. Comme $r = V_f t$,

$$n_X(t) = \frac{f_X M}{\pi \theta^2 m_{\rm H} V_f^3} \times \frac{1}{t^2}$$

.

14. On a directement

$$\frac{\mathrm{d}a}{\mathrm{d}t} = \frac{\mathcal{S}\langle V_X\rangle m_X}{4\rho_g} \times \frac{f_X \dot{M}}{\pi \theta^2 m_\mathrm{H} V_f^3} \times \frac{1}{t^2} = \frac{n_1}{t^2}$$

avec

$$\langle V_X \rangle = \sqrt{\frac{8kT_{\text{gaz}}}{\pi m_X}}$$

15. Par intégration

$$a(t) = a_0 + n_1 \left(\frac{1}{t_M} - \frac{1}{t}\right) = a_0 + \frac{S\sqrt{8kT_{\text{gaz}}m_X}}{4\rho_g} \frac{f_X \dot{M}}{\pi^{3/2} \theta^2 m_{\text{H}} V_f^3} \left(\frac{1}{t_M} - \frac{1}{t}\right)$$

16. Le temps de voyage depuis l'étoile jusqu'au point de condensation des grains est

$$t_{\rm M} = rac{r_{\rm M}}{V_f} = 1.5 imes 10^7 \, {
m s} = 170 \, {
m jours}$$

17. En supposant que le rayon initial des grains au point M est très petit et correspond juste à un noyau de nucléation, on a

$$a_0 \ll a(\infty)$$

et donc

$$a(\infty) \simeq \frac{S\sqrt{8kT_{\text{gaz}}m_X}}{4\rho_g} \frac{f_X\dot{M}}{\pi^{3/2}\theta^2 m_{\text{H}}V_f^3} \frac{1}{t_M} \simeq 3.4\,\mu\text{m}$$