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CONTEXT AND OBJECTIVES

Here we propose to turn Bayesian neural networks (BNNs) [Blu+15] scalable.
• In this work we aim for efficient deep BNNs amenable to complex computer vision

architectures, e.g. ResNet50 [He+16] DeepLabV3+ [Che+18].
• We achieve this thanks to variational autoencoders (VAEs) [KW14] .
• Our approach, Latent-Posterior BNN (LP-BNN), is compatible with the recent

BatchEnsemble [WTB20] method.
• Our approach is efficient and has results close to the state of the art.

The code can be downloaded in https://github.com/giannifranchi/LP_BNN

Fig. 1: Illustration of a standard DNN a standard BNN and LP-BNN.

DEEP NEURAL NETWORK (DNN) AND UNCERTAINTY
• BNNs [Blu+15]: aim to find the posterior distribution of the parameters given the

training dataset P (Θ | D), not only the values corresponding to the MAP. To make a
prediction y on a new sample x the BNN computes :

P (y | x,D) =

∫
P (y | x,Θ)P (Θ | D)dΘ,

• Deep Ensembles[LPB17]: train mutliple DNNs to have access to their uncertainty.

• BatchEnsemble [WTB20]: builds an ensemble from a single base network. Each layer
is composed of “slow weights” (Wshare) shared among all data of one batch, and a Rank-1
matrix that varies among all batch data, called “fast weight” ({sj , rj}Jj=1).

h = a
(
(W>

share(x� sj))� rj
)
,

where a is an activation function and h the output activations.

Fig. 2: Illustration on how BatchEnsemble generates the ensemble weights for an ensemble of size J = 2.

LP-BNN
• We propose to compute the posterior distribution of the fast weights instead of learning the

posterior distribution of the weight.
• This can be efficiently done with a VAE [KW14] that can find a variational approximation
Qφ(z | r) to the intractable posterior Pψ(z | r).

• For each layer of the network fΘ(·) we introduce a VAE composed of a one layer encoder
genc
φ (·) with variational parameters φ and a one layer decoder gdec

ψ (·) with parameters ψ.
• The prior over the latent variables is a centered isotropic Gaussian Pψ(z) = N (z; 0, I) (we

adopt the commonly used approach)
• The encoder takes as input a mini-batch of size J (the size of the ensemble) composed of all

the rj weights of this layer and outputs as activations (µj ,σ
2
j ).

• At each forward pass, we sample new fast weights r̂j from the latent posterior distribution
to be further used for generating the ensemble.

• The BNN is trained in the standard manner with the ELBO loss [KW14]:

LLP-BNN(ΘLP-BNN)=−
∑

(xi,yi)∈D

Ez∼Qφ(z|r) log (P (yi | xi,ΘLP-BNN, z))+KL(Qφ(z | r)||Pψ(z))+‖r−r̂‖2,

Fig. 3: Illustration on how LP-BNN generates the ensemble weights (J = 2).

EXPERIMENTAL RESULTS
We evaluate the performance of LP-BNN in assessing the uncertainty of its predictions on CIFAR-10/100 [KH+09] StreetHazards [Hen+19] and BDD-Anomaly[Hen+19].
We notice that DE with cutout outperforms others on most of the metrics except ECE, cA, and cE on CIFAR-10 , and cA on CIFAR-100, where LP-BNN achieves state of the art results. This means that
LP-BNN is competitive for aleatoric uncertainty estimation. In fact, ECE is calculated on the test set of CIFAR-10 and CIFAR-100, so it mostly measures the reliability of the confidence score in the
training distribution. cA and cE are evaluated on corrupted versions of CIFAR-10 and CIFAR-100 [HD18], which amounts to quantifying the aleatoric uncertainty. On the other hand, for epistemic
uncertainty, we can see that DE always attain best results. Yet, LP-BNN, in most cases, performs close to DE. Computation wise, DE takes 52 hours to train on CIFAR-10, while our solution needs 2
times less, 26 hours and 30 minutes. Overall, our LP-BNN is more computationally efficient while providing better results for the aleatoric uncertainty.

CIFAR-10 CIFAR-100
Method Acc ↑ AUC ↑ AUPR ↑ FPR-95-TPR ↓ ECE ↓ cA ↑ cE ↓ Acc ↑ ECE ↓ cA ↑ cE ↓
MCP + cutout 96.33 0.9600 0.9767 0.115 0.0207 32.98 0.6167 80.19 0.1228 19.33 0.7844

MC dropout 95.95 0.9126 0.9511 0.282 0.0172 32.32 0.6673 75.40 0.0694 19.33 0.5830

MC dropout +cutout 96.50 0.9273 0.9603 0.242 0.0117 32.35 0.6403 77.92 0.0572 27.66 0.5909

Deep Ensembles + cutout 96.74 0.9803 0.9896 0.071 0.0093 68.75 0.1414 82.29 0.0524 47.35 0.1981

BatchEnsembles + cutout 96.48 0.9540 0.9731 0.132 0.0167 71.67 0.1928 81.27 0.0912 47.44 0.2909

LP-BNN (ours) + cutout 95.02 0.9691 0.9836 0.103 0.0094 69.51 0.1197 76.85 0.0677 47.80 0.2324

Tab. 1: Comparative results for classification tasks on CIFAR-10
and CIFAR-100. The results are averaged over three seeds.

Dataset OOD method mIoU ↑ AUC ↑ AUPR ↑ FPR-95-TPR ↓ ECE ↓

StreetHazards
DeepLabv3+

ResNet50

Baseline (MCP) 53.90 0.8660 0.0691 0.3574 0.0652
TRADI 52.46 0.8739 0.0693 0.3826 0.0633
Deep Ensembles 55.59 0.8794 0.0832 0.3029 0.0533
BatchEnsemble 56.16 0.8817 0.0759 0.3285 0.0609
LP-BNN (ours) 54.50 0.8833 0.0718 0.3261 0.0520
LP-BNN + GN (ours) 56.12 0.8908 0.0742 0.2999 0.0593

BDD-Anomaly
DeepLabv3+

ResNet50

Baseline (MCP) 47.63 0.8515 0.0450 0.2878 0.1768
TRADI 44.26 0.8480 0.0454 0.3687 0.1661
Deep Ensembles 51.07 0.8480 0.0524 0.2855 0.1419
BatchEnsemble 48.09 0.8427 0.0449 0.3017 0.1690
LP-BNN (ours) 49.01 0.8532 0.0452 0.2947 0.1716
LP-BNN + GN (ours) 47.15 0.8553 0.0577 0.2866 0.1623

Tab. 2: Comparative results obtained on the OOD task for semantic
segmentation. The results are averaged over three seeds.

Fig. 4: Visual assessment on two images of BDD-Anomaly in which a
motorcycle (OOD class) is present. For each image: on the first row - input

image and confidence maps for MCP, BE and LP-BNN (ours); on the second
row - GT segmentation and segmentation maps for MCP, BE and LP-BNN

(ours). LP-BNN is less confident on the OOD objects.

CONCLUSIONS
We propose a new BNN framework able to quantify uncertainty in the context of deep learning. Owing to each layer of the network being tied to and regularized by a VAE, LP-BNNs are stable,
efficient, and therefore easy to train compared to existing BNN models. The extensive empirical comparisons on multiple tasks show that LP-BNNs reach state-of-the-art levels with substantially lower
computational cost. We hope that our work will open new research paths on effective training of BNNs. In the future we intend to explore new strategies for plugging more sophisticated VAEs in our
models along with more in-depth theoretical studies.
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