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Abstract

The Error Correcting Output Codes offer a proper matrix framework to model
the decomposition of a multiclass classification problem into simpler subprob-
lems. How to perform the decomposition to best fit the data while using a small
number of classifiers has been a research hotspot, as well as the decoding part,
which deals with the subproblem combination. In this work, we propose an
evidential unified framework that handles both the coding and decoding steps.
Using the Belief Function Theory, we propose an efficient modelling, where each
dichotomizer in the ECOC strategy is considered as an independent informa-
tion source. This framework allows us to easily model the refutation information
provided by sparse dichotomizers and also to derive measures to detect tricky
samples for which additional dichotomizers could be needed to ensure decisions.
Our approach was tested on hyperspectral data used to classify nine different
types of material. According to the results obtained, our approach allows us to
achieve top performance using compact ECOC while presenting a high level of
modularity.

Keywords: Classification, Error Coding Output Codes, Belief Function
Theory, hyperspectral data

1. Introduction

Automatic multiclass image classification is a major topic in pattern recog-
nition in computer vision and numerous methods have already been proposed,
e.g./Geman and Geman| (1987)); Boser et al.| (1992);|Crammer and Singer| (2002));
Wang et al| (2010); Krizhevsky et al|(2012). With regard to the complexity of
some types of data (e.g. hyperspectral data images) and the increasing number
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of classes (e.g. for applications requiring finer and finer classes), the ‘Divide
and Conquer’ strategy has been proposed Brassard and Bratley| (1996). This
strategy consists of splitting the multiclass problem in a set of binary classifica-
tion problems simpler to solve. Following such a strategy, the Error Correcting
Output Codes (Dietterich and Bakiri (1995)); Allwein et al| (2000)) have been
designed to address both involved problems of decomposition of the multiclass
problem and interpretation of binary classification outputs. For instance, the
one-versus-one (OVO) and one-versus-all (OVA) strategies (Hastie and Tibshi-|
rani| (1998); Rifkin and Klautau| (2004))) are specific ECOC. More generally,
given a set of classes () of cardinality N, an ECOC matrix M of size N x [ with
values in {—1,0,1} corresponds to a decomposition of the multiclass problem
in [ binary problems called dichotomizers. Each dichotomizer, coded by one M
column, aims at classifying any given sample between two non overlapping sub-
sets of classes. If the two class subsets form a partition of 2, the dichotomizer
is said to be dense and M;; € {—1,1}, where 1 and —1 designate the opposing
classes. Otherwise, it is said to be sparse and M,; € {—1,0,1}, where 0 des-
ignates the classes that are not involved in the classifier training. Now, ECOC
research still includes open-ended questions either for coding (i.e. defining M)
or for decoding (i.e. assigning class label according to M answers), e.g.
et al| (2016)); Santhanam et al| (2016); Xu et al.| (2016); Bautista et al.| (2017)).

1.1. ECOC coding related work

Concerning coding, initial methods such as|Allwein et al.|(2000) only consider
constraints on M: size, type of dichotomizers and distance between M rows,
i.e. class codeword. However, using this approach, the number of dichotomizers
remains an a priori parameter difficult to set and this predetermined behaviour
does not allow us to take into account the dichotomizer’s specific performance.

Alternatively, performance-driven methods have been proposed. For exam-
ple, assesses the performance of every dichotomizer (among the
whole set of potential dichotomizers given the set of classes) and builds M by
favouring dichotomizers exhibiting the highest performance. However, besides
being computationally very expensive, such an approach fails to provide some
redundancy where it is the most needed, namely in order to separate close or
ambiguous classes.

Then, to address this point, data-driven approaches have been proposed.
The data are analyzed to understand which classes are difficult to separate and
to infer the ECOC matrix optimizing their separation. Among the criteria to
analyze the data, the use of a pre-computed confusion matrix is rather pop-
ular, e.g. [Escalera et al. (2008)); |Gao and Koller| (2011)); [Zhou et al| (2016),
whereas [Pujol et al. (2006) considers the mutual information within the di-
chotomizer sets. For the construction of ECOC, some hierarchical constraints
are often introduced, i.e. starting from easily distinguishable superclasses and
adding dichotomizers to distinguish classes within these superclassesPujol et al.,
(2006)); Zhou et al.| (2016)), or conversely [Escalera et al.| (2008). For instance,|Gao|
land Koller| (2011]) proposes a joint optimization process to learn a hierarchy of
classifiers in which each node corresponds to a binary subproblem. Nonetheless,




although the hierarchical configuration speeds up the testing step, it is highly
prone to error propagation. Some other data-driven approaches explicitly focus
on removing ambiguities between similar classes. In [Pujol et al| (2008]), the
ECOC matrix is iteratively constructed as follows: at each iteration, the pair
of the most confused classes is derived from the current confusion matrix and
the ECOC matrix is extended with new dichotomizers that both separate the
ambiguous classes and that show good performance. In Bautista et al| (2017)),
by factorizing the confusion matrix, a dense ECOC matrix is generated so that
the ambiguous classes have distant codewords. Finally, note that all cited data-
driven ECOC matrix design solutions rely on learning data, which may make
their results prone to errors when faced with unexpected class ambiguities.

1.2. ECOC decoding related work

The simplest decoding is the minimization of the Hamming distance,
, based on the binary decisions of the dichotomizers. Then, the loss-based
decoding, [Allwein et al| (2000), has been proposed to take into account the
confidence levels associated with binary decisions, according to the considered
loss function and a calibration process of the dichotomizer outputs or scores.
If these approaches have shown to be efficient for dense ECOC, they come up
against modelling the ambiguity introduced by the absent classes in the sparse
classifiers (0 values in M). In the Hamming and classic loss-based decoding, any
answer of a 0—valued class is considered irrelevant and a fixed weight is assigned.
However, as underlined by [Pujol et al.| (2008), this fixed weight creates a bias
when there is an imbalance among the classes involved in sparse classifiers.
Therefore [Escalera et al.| (2010) proposed a new ternary decoding method that
is robust to this bias. However, [Escalera et al.| (2010) still misses the opportunity
to exploit additional information from the 0—valued class answers, e.g. in terms
of refutation of some classes, as we propose in this work using belief functions.

1.8. Belief function related work

The evidential framework was initially defined by A. Dempster and G.
Shafer [1976)), while Ph. Smets proposed his interpretation in terms of
belief transfer, |[Smets and Kennes| (1994). This theory has been widely used to
model different kinds of uncertainty in classification problems (e.g.
Mascle et al| (1997); [Tabassian et al| (2012); [Liu et al| (2014))), detection and
recognition (e.g. [Xu et al| (1992); Mercier et al. (2009)), tracking (e.g. [Smets
and Ristic| (2007)); |André et al| (2015))), object reconstruction (e.g. Diaz-Mas
et al.| (2010); Rekik et al| (2016)) and localization (e.g. [Roquel et al.| (2014)
etc. A major strength of belief function theory is that it avoids introducing bias
in cases of partial ignorance (conversely to an equiprobability assumption or
the mentioned fixed cost). This makes it all the more important that different
sources of information are combined, sources that may correspond to differ-
ent classifier outputs when dealing with a classification problem. In this case,
the basic belief assignment (or bba) allocation step also handles the calibra-
tion process of the classifier outputs. Now, numerous bba allocation methods,




among the ones already proposed, are actually data-driven approaches. For ex-
ample, [ Xu et al.| (1992) proposes a method to build bbas for a classifier using
the recognition rate, the substitution rate and the rejection rate derived from
its confusion matrix; |Parikh et al.| (2001) considers the classifier’s performance
values for the different classes; and more recently, Deng et al| (2016]) which
aims at combining several multiclass classifiers, constructs a bba per multiclass
classifier from its crisp outputs (labels) and learned precision-recall rates. Now,
conversely to Deng et al.| (2016), authors generally consider soft outputs and
even |Xu et al.| (2016 proposes to take into account not only the dichotomizer
score value itself but also the number of samples per score value by extending
the classic probabilistic calibration methods such as the logistic regression to
the belief function framework. Finally note that the final decoding depends on
the interpretation of the dichotomizers bbas: either as independent information
sources, or as proposed in |Quost et al.| (2007), as conditioned pieces of infor-
mation (allowing, at least in the classic OVO and OVA cases, to recover the
multiclass bba from an optimization problem).

In our approach, we propose a full ECOC strategy (coding and decoding)
that takes advantage of the modelling ability of the belief function theory frame-
work. For the decoding part, each dichotomizer answer will be modeled by a
belief function assignment depending on both the confidence score and the pa-
rameters of the calibration process. The method we propose extends the work
of |Lachaize et al.| (2016).

For the coding part, we use evidential indices such as conflict to dynamically
extend any ECOC matrix in such a way as to identify and remove remaining
ambiguities, rendering the proposed coding method auto-adaptive.

The paper is organized as follows: Section [2] introduces the belief function
tools and notations used in this work. Section [3]explains the proposed evidential
classification including the ECOC coding and decoding processes. Section [4] dis-
cusses the results obtained from experiments using hyperspectral data acquired
for a material classification application. Section [5| gathers the conclusions and
perspectives of this work.

2. Preliminaries on Belief Function Theory (BFT)

In this section, we introduce the tools and notations used in this study. For
a reader not familiar with BFT, we refer to the founding book, [Shafer| (1976).

2.1. Basic concepts

Let © denote the discernment frame, i.e. the set of mutually exclusive
hypotheses representing the solution possibilities and let 2 denote the power
set of €, i.e. the set of subsets of Q elements. 2% cardinality is denoted |29’
and it is equal to 2/’l. A bba (basic belief assignment) is defined through its

mass function m such that: m : 2% — [0,1], > m(4)=1. If m(4) >0, A
Ae2%
is said to be a focal element and m (A) represents the belief that the solution

is in A, without having to specify the affiliation of the solution to any subset of



A. In the following, we denote by F,, the set of focal elements of the bba m.
Under the open world assumption, 2 may be non exhaustive and () may be a
focal element () € F,,,), with its mass representing the belief that the solution
is not in €.

Refinement and coarsening are dual operators that allow some transfor-
mations of the discernment frame and its associated bbas. Specifically, let ©
and Q be two discernment frames such that |0 < |©2]. A refinement from ©
to Q is defined by a function p : © — 2 such that the set of the p images
({p(B), B € ©}) is a partition of Q, noted P, (Q): VA€ P,(Q),3!BcO | A=
p (B). Then, specifying by a superscript on m the discernment frame, a bba
initially defined on 2® may be refined on 2 using

m@ (U»?:lBl) lfH{Bl,,Bn} € en ‘A:Ulep(Bz),
0 otherwise.
(1)

Essentially, if © is a set of superclasses of () classes, refinement boils down
to mapping the elements of F,,e to disjunctions of €2 classes.

The discounting operator allows us to take into account prior knowledge
about the bba reliability. Since m® () represents the fraction of ignorance
carried by bba m, classical discounting |Appriou (1997) modelling the global
degree of reliability o of a bba boils down to increasing m® (Q):

{ mit(A) = axmf(A),VA € 22\Q,

VA €22 m(A) = {

[e%

ml(Q) = axm®(Q)+1-a. (2)

«

The less reliable is the initial bba, the lower «, the more belief is transferred to
Q.

The conjunctive combination rule is the most widely used combination
rule because of its simplicity, ability to specify the information and convenient
mathematical properties (in particular commutativity and associativity). In
the case of two independent bbas m$! and m$’ defined on the same discernment
frame, it can be written as follows:

VA € 2%, mfq, (A) = mi Q my (A) = > m{ (B)m5 (C). (3)
(B,C)EFm, X Frmys
BNC=A

The conditioning operator allows us to take into account the certainty we
have that the solution is in a given subset B of 22. It can be expressed as the
combination of the initial bba mf with the categorical bba m$ | m% (B) = 1:

VA € 22, m? [B] (AN B) = m® (A4). (4)

The ballooning extension is the inverse operator to conditioning. It is de-
fined according to the minimal commitment principle Smets and Kennes (1994).
If B=Q\ B is the complementary of B in {2

VACBe2?, me(AUB) = m9[B](A), (5)
VA C B €29, m(A) = 0.



The decision is generally taken based on a function that carries a proba-
bilistic interpretation. The three most used functions are the plausibility, P,
the credibility, Bel, and the pignistic probability, BetP. The first two are
in one-to-one relationship with m and may be interpreted as upper and lower
bounds of an imprecise probability function, whereas Bet P was defined in[Smets
and Kennes| (1994) to have the same mathematical properties as a probability
defined on © (provided that m (0) < 1).

VA €29 PI(A) = > m(B), (6)
B€.7:ms2|AUB;ﬁ®
VA€2?, Bel(A)= Y m"(B), (7)
BeF, o|BCA
B 1 mS (B)
VA €Q,BetP (A) = — 5 0 > B (8)

BeF, alAeB

3. Proposed approach

3.1. General scheme

The proposed approach arises from the following key points:

e Firstly, following data-driven approaches, we assume that some classes are
more difficult to separate than others and that, the decisions in favour of
one of them shall be robustifed. This can be achieved using well-chosen
additional dichotomizers aimed to address these class ambiguities, either
directly or indirectly.

e Secondly, sparse dichotomizers allow us to focus on subsets of classes (typ-
ically subsets involving the ambiguous classes) in a more flexible way than
dense dichotomizers. Indeed, even if authors, e.g. in [Ritkin and Klau-
tau (2004)); [Pujol et al.| (2008), argued in favour of dense dichotomizers
because their frontiers may be more complex and interesting than those
of sparse ones, those works also underlined the fact that establishing the
right parameter tuning for dense classifiers is not easy, notably because of
unbalanced class subsets in the training step.

e Thirdly, sparse classifier outputs shall be correctly interpreted. In par-
ticular, the missing classes (i.e. the classes not included in any of the
two subsets of classes considered by a sparse dichotomizer) should not
introduce a bias in the decoding process, [Escalera et al.| (2010)).

e Fourthly, except in the case of performance-driven approaches, coding and
decoding are not independent. For instance, the ‘best” ECOC matrix M is
estimated assuming a decoding criterion (generally the Hamming distance)
and/or assuming the class ambiguities (generally from a confusion matrix
that depends not only on the data but also on the classification algorithm).



The proposed solution was built to address these points. It is based on the
interpretation of each dichotomizer as an individual source of information so
that the multiclass classification problem is viewed as a fusion problem between
imprecise and uncertain pieces of information (dichotomizer outputs). Focus-
ing on belief function framework to handle both imprecision and uncertainty,
ECOC decoding is carried out in three stages: bba allocation, bba combination
and decision on the final bba. The bba allocation explicitly models the ambigui-
ties within a subset of classes not distinguished by a dichotomizer as well as the
ambiguities with sparse dichotomizer missing classes. Such modelling can be
readily achieved by handling compound hypotheses representing the two sub-
sets of classes corresponding to the dichotomizer’s hypotheses. Then, the bba
combination allows us to derive a single bba gathering all the dichotomizer’s soft
outputs. This bba brings us a wealth of information: the most likely class(es)
and also the evidential measures of imprecision and conflict outcoming from the
combination. In this work, we propose to exploit these measures for ECOC cod-
ing by determining it from the current ECOC decoding. Indeed, these measures
provide us with valuable information on the remaining ambiguities between
classes and with hints to choose the more useful dichotomizers to raise these
ambiguities.

Figure[I]presents the general scheme of the proposed approach for a sample s.
The first horizontal block represents the main steps of the decoding module,
whereas the coding block (vertical) shows the extension and concatenation of the
initial ECOC matrix with additional dichotomizers. For the first iteration, the
initial ECOC M; is provided a priori (e.g., OVA) and the evidential decoding
(cf. Section is performed to get the bba m; that gathers the information of
the soft outputs of the dichotomizers of M;. From m, the first decision to take
is whether to continue the iterative process or not. If the decision is to stop, then
m1 also allows us to decide the most likely class and to assign its label to the
considered sample. Otherwise, as explained in Section the complementary
dichotomizer(s) able to remove the ambiguities are estimated and a new bba is
derived from their soft outputs (by evidential decoding). This bba, called m; at
iteration ¢, is combined with the bba(s) obtained at previous iteration(s). Note
that thanks to the associativity of the conjunctive combination rule (Eq. ),
the iterative nature of the process (iterative combination of partial ECOC) has
no impact on the obtained bba miq.. ;.

Let us underline that the proposed approach differs from classic data-driven
ones in the sense that it automatically adapts to the basis multiclass classifier
(My) whereas, except [Pujol et al.| (2008) that extends an initial multiclass clas-
sifier (ECOC matrix), classic data-driven approaches assume that main class
ambiguities subsist irrespective of the classifier and can be estimated indepen-
dently.

To illustrate our algorithm, we will consider a classification problem from
image data (specifically classification of kinds of material based on hyperspec-
tral sensors). For this problem, the pixels of the image are the samples to be
classified. Now, when the samples of two (or more) classes are close in the fea-
ture space, the classes are said ambiguous since the labels of their samples are
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Figure 1: Two iterations of the general scheme of the proposed approach (Note
that M; and M are represented as transposed).

easily confused one for the other. These ambiguous classes generate samples for
which the classification is t¢ricky, typically involving unclear decisions between
the ambiguous classes. In the following, by language extension, we call tricky
such pixels.

3.2. Evidential decoding

Let us now specify the three announced stages of evidential decoding.

3.2.1. Bba allocation for dichotomizers

Bba allocation is often presented as a crucial issue since it contains the mod-
elling of the source uncertainty, imprecision (or partial ambiguities/ignorance)
and reliability. Among the numerous works already proposed,
seems the closest to our purpose. It deals with the derivation of a bba from
the soft output of a dichotomizer, i.e. its score for a given pixel. The relation-
ship between a score value and the corresponding bba is obtained through a



calibration step that extends the logistic regression used to derive a probability
from the score value to the derivation of a bba. Xu’s calibration step takes into
account the imprecision related to the number of samples observed for the con-
sidered score value so that it is all the more interesting as the number of samples
is rather low and variable versus the score values, Lachaize et al. (2016).

Indeed, when the number of samples achieving a given score is important,
the calibrated bba tends towards a Bayesian bba (null mass on the compound
hypothesis representing the disjunction between the dichotomizer classes).

Now, if there is an important overlap between the scores of the two classes,
the samples in the overlapping area are numerous so that the calibrated bba
tends towards the dogmatic bba m ({—1}) = m ({1}) = 0.5. Such a committed
bba is not in line with the idea that in such a case a score observation has a low
reliability and shall be discounted to defer the decision to other sources.

In this study, we have investigated how relevant the approach proposed
in Bloch| (2008)) is for dichotomizer evidential calibration problem. The idea
is to modify (make it less committed) an initial bba depending on the context.
This latter is perceived via dilation or erosion operators defined in fuzzy math-
ematical morphology according to [Bloch and Maitre| (1995)). For our problem,
we implement |Bloch/| (2008)) as follows.

Let hy (s) = mﬁx € R, be the sigmoid function fitted by the
logistic regression. Denoting by T the used t-norm, L the t-conorm dual of T
with respect to a complementation ¢, the fuzzy dilation and the fuzzy erosion
of p function of R are defined by:

Vo € R, 0, (1) (z) = sup Tlu@),v(@—y), (9)
Yz €R,e, (u) (z) = inf Lin(y),e(v(z-y)l, (10)

with v the structuring element. In our case, we use Lukasiewicz’ t-norm:
TrLuk (2,y) = max {0,z +y—1}, ¢(z) = 1 — 2, Ly (z,y) = min{l,z+y},
and a Gaussian structuring element parametrized by a: v (z) = e(=%"/®) the
bigger «, the wider v. Fuzzy erosion and dilation are applied to hg or to hy
erosion/dilation result in order to achieve hy opening: €, o d, (hg), or closing:
(5,, o€y (h@)

Then, let {—1, 1} be the dichotomizer discernment frame and m the Bayesian
bba associated to the score x such that mq [z] (1) = hg (z) and mg [z] (—1) =
1 — mg[z] (1) (for notation shortness, the discernment frame superscript has
been omitted). Bba assignment Bloch| (2008) is valid only if, for mg, only
pairs of focal elements overlap. This is our case since mg [x] has only two focal
elements. Therefore, the duality property of dilation/erosion operators or clos-
ing/opening allows for the derivation of credibility and plausibility functions of
a well-defined bba m? (where superscript recalls that the discernment frame is
binary and subscript refers to the index of the dichotomizer). In our case, we
focus on dilation/erosion so that:

mi(A) = e (mola)) (4), vAe{-L1},
m((-1,1}) = 1-ml({-1}) - m! ({1}).



In the absence of overlapping between scores of the dichotomizer classes, the
closer the bounds of the scores intervals, the steeper the slope of the sigmoid, and
the higher the mass transferred to {—1,1} (for the scores located in the steep
part of the sigmoid). Such a modelling allows a greater robustness versus class
border estimation. In the case of overlapping, we assume that the reliability of
the dichotomizer decreases with the size of the overlapping (indeed, any score
included within the overlapping does not allow us to derive the sample class
with certainty). Then, by increasing the width of the structuring element in
relation with the length of the overlapping, the bba is automatically discounted
(m ({—1,1}) increases).

Figure [2] shows, for different distributions of the scores, the mass value
m ({—1,1}) versus score values, derived either by Xu’s calibration, Xu et al.
(2016)), or by Bloch’s allocation, [Bloch| (2008), with variable structuring ele-
ment width. On the same plot, we have also represented the sigmoid obtained
by the logistic regression and the class samples labelled 0 or 1 on the y-axis. We
note that in the absence of overlapping (left sub-figure), Xu’s bba is less com-
mitted than Bloch’s one, but the modelled ignorance (m ({—1,1})) decreases
with the appearance of the overlapping conversely to the Bloch’s allocation. In-
deed, in this latter, m ({—1,1}) models the ambiguity between the two classes
(by allocating the mass to the disjunction rather than by equidistributing it
between the two classes) either due to their overlapping or to the imprecision
of the border between classes.

1 | 1 : 1
0.5 / 0.5 0.5
| N
- S
| | +
0 LS 0 il 0
10 -5 0 5 10 -10 -5 0 5 10 -0 -5 0 5 10

+ Scores—Sigmoid = -Xu - -Bloch + Scores—Sigmoid - -Xu = -Bloch + Scores—Sigmoid = -Xu - -Bloch

Figure 2: Comparison of m ({—1,1}) value (y-axis) versus score (x-axis) in case
of Xu’s calibration or Bloch’s allocation; 3 different cases of score overlapping.

In our application (classification based on ECOC dichotomizers) the number
of sources is important (equal to the length of the ECOC, i.e. typically between
one and few tens) so that, using the conjunctive combination rule, sources should
be as little committed as possible. Then, from mi»’ we derive a consonant bba
by transferring the mass of the weaker focal element to the disjunction {—1,1}.

3.2.2. Bba combination

Decoding the ECOC involves combining the different outputs of the di-
chotomizers. The bba allocation step (Section allows us to derive an ele-
mentary bba for each of the dichotomizer’s soft output. However, each of these
bbas has its own discernment frame determined by the considered dichotomizer
classes. Since combination can only be performed in the same discernment
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frame, the first step is thus to project the elementary bbas from their own di-
chotomizer discernment frame to the common multiclass discernment frame Q.
This step depends on whether the dichotomizer is sparse or not, i.e. whether
its classes form a partition of Q2 or do not.

If the dichotomizer is dense, its classes are simply interpreted as compound
classes, |Lachaize et al.| (2016). If p; is the function that provides the subset of
€ classes versus each class of the i*" dichotomizer (p; : {—1,1} — 2%), then bba
refinement may be written:

{ m (pi (4))
mg (Q)

\
3

(12)

\

3
—
——
L
—_
—
S~—

b (A), VA € {-1,1},
b

If the dichotomizer is sparse, in addition to the refinement on p; (—=1)Up; (1),
a ballooning extension from {p; (=1),p; (1)} to Q shall be performed. The
combination of these two operations leads to the following equations:

m? (Q\pi (1) = my ({-1}),
m (Q\pi (=1) = my({1}), (13)
me (Q) = m({-1,1})

Note that handling compound hypotheses allows us to model effectively par-
tial ignorance conversely to usual decoding of the ECOC matrix. Firstly, con-
sidering a dense dichotomizer addressing subsets p; (—1) versus p; (1), a decision
or a score in favour of p; (1) (for instance) should not prejudge the probabilities
of the hypotheses within p; (1), not even their equiprobability. Secondly, us-
ing the ballooning extension allows an appropriate modelling of the information
provided by sparse dichotomizers. Indeed, regardless of the output of a sparse
dichotomizer, every hypothesis in the complementary of p; (—1) U p; (1) (in Q)
is possible. Thus, a high score in favour of p; (1) (for instance) should be inter-
preted as a refutation, i.e. as a strong disbelief in p; (—1) (rather than a belief
in p; (1)).

Finally, in the proposed model, each dichotomizer is considered as a source
providing partial information about the actual class in €2. These partial pieces
of information are formalized by means of the mi-’ bbas that are then combined
using the conjunctive combination rule (Eq. ) to infer a global belief on €.
Such an approach is much more flexible and simpler than the one proposed
in |Quost et al.| (2007) in which the dichotomizer answers are considered as
conditioned information which implies solving an optimization problem to derive
the multiclass bba, while providing equivalent or better results |Lachaize et al.
(2016).

3.2.3. Results on simulated data

To illustrate this decoding part, we present some first results showing the
interest of the belief function framework for ECOC decoding. We consider the
one-versus-one (OVO) and one-versus-all (OVA) cases varying the number of
classes (N € [5,7]) and we draw random scores with different error probability
rates (e € [0.1,0.3]), assuming dichotomizers have similar performance. Table
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Table 1: Comparison of CCR performance achieved by different decoding strate-
gies including Hamming, loss-based (LB1 and LB2) and Evidential ones (Xu and
Bloch), varying the dichotomizer error probability rates (e) and the class number

(N); dense (OVO) and sparse (OVA) ECOC cases.

¢ 1 2 3
N 5 /6 /71 5 /6 /1 5 /6 ) 1

OVA  Hamming75.6 / 71.1 / 67.4  55.8 /50.2 / 46.1  40.5 / 35.1 / 30.9
LB1  895/87.5/86.0 70.8/67.1/642 51.3/46.8 /43.2
LB2 89.5/87.6/859 70.8/67.1/642 51.2/46.8 /432
Xu 89.5 /87.6 /859 70.9/67.1 /642 51.3/46.8 /432
Bloch  89.5/87.6 /859  70.9/67.2/64.8 51.3/46.8/43.2

OVO  Hamming78.7 / 77.0 / 75.7  59.2 / 55.5 /52.5  41.4 / 37.8 / 33.2
LB1 854 /847/828 650/60.6/57.1 422 /369 / 32.8
LB2 859 /855/839  66.6/625/59.3 43.9 /386 /345
Xu 87.9 /882 /883  70.9 /69.3/67.7 50.7/46.8 ) 43.2
Bloch 88.1/88.3/88.5 71.5/70.2/69.1 51.4/47.7/44.4

shows the obtained results in terms of percentages of Correct Classification
Rates (CCR). Shown CCR are average values considering different numbers of
samples for bba calibration (sigmoid function estimation) and different drawing
laws for score (uniform, Gaussian, heavy queues). The bold numbers underline
the best performance (considering exact values). We note that highest CCR
values are almost always achieved by evidential decoding with a slight advantage
for Bloch’s allocation in particular in the OVO case. Besides, the dense case is
much better handled by the loss-based decoding than the sparse one, so that
for the OVA case all considered approaches are equivalent with the exception of
Hamming decoding which is significantly worse. In the sparse case, the interest
of the belief decoding versus the probabilistic (loss-based) one increases with the
error probability rate and also (to a much lesser extent) with the class number,
which means that it is all the more interesting as the classification is difficult.

3.3. Evidential coding

Let us now discuss the coding step that deals with the definition of the ECOC
matrix. As explained in Section [3.I} we propose that the ECOC matrix is not
defined at once but in a dynamic way from the preliminary results obtained from
‘partial ECOC(s)’ (cf. Figure. According to this scheme, coding and decoding
are performed altogether by alternate estimation. Then, at each iteration, three
decisions have to be taken: (i) Is the information gathered by the current ECOC
matrix sufficient to make a reliable decision; (ii) If not, how to extend the current
ECOC; and (iii) Should the extended ECOC process all the samples. Besides
being connected, the answers of all these issues shall be contained in the current
bba miy.. .-
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3.8.1. Decision criteria
From the current bba m. ;, two main pieces of information may be derived:

e How reliable would an immediate decision be?
e Which are the most likely classes?

In relation to decision reliability, several indices intrinsic to a bba allow
for the detection of a questionable labelling decision. In this work we point
out two reasons that prevent a reliable decision. The first one is when we
lack information. That would be, for instance, if the dichotomizers considered
in the ECOC do not allow for distinguishing some classes, or if the obtained
dichotomizer scores are very close to 0 (i.e., based on the sigmoid calibration,
dichotomizer hypotheses would be roughly equiprobable). In this work, we
assume that the lack of information may be assessed in terms of the imprecision
of the decision. Using belief functions, this latter is measured by the imprecision
interval defined as the difference between functions Pl and Bel (Eq. ) for
the decided class may:

L= Pl (arg maxBetP(A)) — Bel (arg maxBetP(A)) . (14)
AeQ AeQ

The second reason to suspect a decision is when the considered dichotomizers
produce conflictual outputs. In this case, probably at least one of them provides
an erroneous output involving the observed conflict when it is combined with the
other outputs. Using consonant bbas for elementary bbas (cf. Section ,
the mass on () can only come from their conjunctive combination (belief in
incompatible hypotheses, i.e. having an empty intersection) so that the conflict
index seems to be a good indicator to measure if the dichotomizers do not agree
and therefore denotes a potential misclassification.

S55% 835
RCSSSSAIS
S OSSISS SR <
P
s

S
>

N N >
Imprecision 0 0 Conflict Imprecision 0 <0 Conflict Imprecision 0 0 Conflict Imprecision Conflict

(a) OVA (b) OVO

Figure 3: 2D histograms of decision reliability indices computed on subsets of
pixels either incorrectly classified (left) or correctly classified (right); (a) case of
dense ECOC, (b) case of sparse ECOC.
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Thus, to each of the two reasons to make a decision questionable, we as-
sociated an index (¢ or m (f))) derived from the bba supporting the decision.
Anticipating Section [4] we present some results obtained from our hyperspec-
tral data involving nine classes. Figure [3] shows the histograms of conflict and
imprecision values. We distinguish the case of the OVA and the OVO ECOC.
For the OVA, bbas obtained from dichotomizer outputs are much more commit-
ted than in the case of the OVO because of the ballooning extension (Eq. (13)).
Then, the OVA bba is characterized by a higher level of conflict than the OVO
one. We also distinguish the cases of the ill-labelled pixel set and the correct-
labelled pixel set. For the correct-label set, there is a very sharp peak at (0,0)
meaning that both conflict and imprecision are low in the majority of cases. For
the ill-label set, histograms present high values either for the conflict index for
the OVA case or for the imprecision index for the OVO case. In the following,
the set of samples flagged by one or two of these indices, i.e. tricky pixels, is
denoted T. Even if T do not coincide exactly with the set of wrongly-classified
samples (as shown by the small peaks beside the main ones in Figure , the
proposed indices seem to be good indicators of potentially erroneous samples,
i.e. for which an immediate decision is questionable.

Then, we aim at identifying the most likely classes for each element of 7. In
this work, we consider the generalisation of the pignistic transform (Eq. ):

VA C Q, BetP (A) = - n}bﬂ @ >
BeFm,

[ANB| g
B m> (B). (15)
Since Bet P increases with the cardinality of the hypothesis (e.g., consonant
case), to remove bias, the comparison shall be performed between hypotheses
of the same cardinality. Since, while looking for the most likely classes, we
are considering tricky pixels, the considered cardinality shall be greater than 1.
Assuming that ambiguities can be solved pair by pair, for each selected pixel,
we derive the pair of the most likely classes as (w;,ws) = argmax BetPS (A).
Ae29 |A|=2

We make the assumption that the pairs of ambiguous classles‘ maximize the
previous BetP. The number of times a pair of classes maximizes BetP is then
a helpful information to choose the additional binary classifiers (that shall solve
the ambiguities). Considering a given sample set, we derive, for each pair of
classes, how frequently the respective pair maximizes BetP and order class
pairs by decreasing frequency. The most frequent pairs of classes (lower ranks
in the ordering) correspond to the more frequent class ambiguities, thus the
ones we aim to solve prioritarily. Note that this ordering is relevant only for
samples we would like to correct (i.e. the wrongly classified ones). To establish
this ordering in the absence of ground truth, we suggest to consider 7 as the
sample set which represents the set of pixels for which the current label appears
questionable. Considering the same dataset as for Figure 3} Figure |4] shows for
each pair among 9 classes ((g) = 36 pairs in all), its rank in a given ordering
that is established considering different sets of pixels, namely: (i) any pixel,
(ii) only wrongly-classified pixels, (iii) only tricky pixels i.e. 7. The ranks
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are displayed in colour gradient (from red to blue) so that the pairs in the
warm colours (red to orange) are the ones that should be chosen in priority to
be distinguished by additional dichotomizers. The relevance of the proposed
conflict index is stressed by the similarity between the two orderings according
to conflict thresholded pixels and the ordering according to wrongly-classified
pixels.

Considered Pair of classes involved in the
Set problem
1 5 10 15 20 25 30 35

Every samples [l 1 BN EEEN EEN W RN

Wrongly
classified samples I I T HENSN HE B 'E Em
Pl BN N Ad
high conflict

Colour Gradient: by ascending rank in the ordering (i.e. descending frequency)

Figure 4: Frequency-ordering (among the 36 considered pairs) derived consid-
ering either (i) all pixels (1% line), (ii) only wrongly-classified pixels (2"¢ line),
(iii-iv) conflict thresholded pixels (conflict greater than 0.2 and 0.5, 3"¢ and 4*"
lines respectively); order value coded in colour gradient from red to blue.

3.8.2. Supplementary dichotomizer selection
Having derived the ordering of the pairs of classes {(w;,ws)}, for each of them
we have to choose the dichotomizer that will allow us to remove the ambiguity
between w; and ws. Even if some dichotomizers which handle only one of these
two classes may bring some useful information (depending on the ambiguity
left by the other dichotomizers), we focus on dichotomizer(s) which explicitly
distinguish w; and ws: Denoting the dichotomizer classes p; (—1) and p; (1) (like
in Section ,
v w1 € p; (—1) Nwa € p; (1),

wo € pi (=1) Awy € pi (1). (16)

Even with constraint , the number of possible dichotomizers remains
intractable. In actual applications, it is generally impractical to train every
dichotomizer and even if new training might be considered during the ECOC
construction, we assume a pool of dichotomizers at our disposal. Then, denoting
Qu1|w, the set of dichotomizers of the pool satisfying constraint , we select
the best performing dichotomizer in Q|-

Indeed, the fact of considering the partial ECOC result (selection of tricky
pixels and estimation of the ambiguous classes for each of these pixels) is likened
to a data-driven approach. Therefore, by adopting a performance criterion to
order the elements of any given Q,,.,, our approach combines both criteria
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in a hierarchical way. This idea of mixing performance-driven and data-driven
strategies in a hierarchical way can also be found in [Pujol et al.| (2008]).

3.8.3. Global ECOC versus local ECOC

In previous works about ECOC coding, either data-driven approaches (e.g. [Pu-
jol et al.| (2006); Escalera et al.| (2008)); |[Santhanam et al.| (2016)); [Zhou et al.
(2016))) or performance-driven ones (e.g. Passerini et al.| (2004); Bai et al.|(2016))),
the same ‘optimal’ ECOC is applied to every sample (pixel for an image). In
this work, having derived the dynamic ECOC (at a given iteration of our gen-
eral scheme), we may apply it either to the whole set of pixels, as usual, or to
subsets.

In the case where our dynamic ECOC is applied to the whole image, we call
it ‘global’. Then, our approach may seem close to [Pujol et al.| (2008]) where the
authors propose to extend any ECOC matrix by adding dichotomizers consid-
ering current result performance. However their approach differs from ours on
the following points. The difficult classes (that need extra classification effort)
are established by analysing the confusion matrix computed via a weighted de-
coding method. However, estimating this confusion matrix requires several sets
of labelled samples (in addition to the training of the dichotomizers), whereas,
in our work, pairs of difficult classes are identified by a conflict analysis that
do not use ground truth data. Therefore, a strong advantage of the proposed
approach is its ability to dynamically cope with new ambiguities.

An alternative to previous global ECOC is to consider the supplementary
partial ECOC only for the pixels of 7, mainly in order to reduce the processing
time. This strategy is called ‘semi-global’ since, at the end it comes down to
having partitioned the image in subsets of pixels (one splitting per iteration)
and having applied to each of these pixel subsets an ECOC derived from the
restriction of a common global ECOC to a subset of dichotomizers. For instance,
in the case of two iterations and initial ECOC M7, the image is partitioned
between 7; computed at the end of the first iteration and its complementary 7,
in the whole set of pixels, so that 7; pixels are finally classified using My and Ty

pixels are classified using My My where — denotes the matrix concatenation.
Another variant, called ‘local’, consists in customizing the additional di-
chotomizers for every pixel, by extending the basic ECOC matrix only with
dichotomizer(s) which help to remove the ambiguity between the most likely
classes at the considered pixel. For instance, from M and 77, 71 pixels will be
classified by M7 whereas each pixel s of Ty is classified using a specific ECOC

M, D (s), where D (s) is chosen in the subset of dichotomizers Q,, ., (s) spe-
cific to the separation of the ambiguous classes in s.

Finally, it appears that the ending condition depends on too many criteria
related to the specific application: complexity of the classification (number of
classes and quality of data), minimum performance requirements, processing
time, etc. Therefore, like in most ECOC coding works that usually consider
an a priori fixed number of dichotomizers (Allwein et al.| (2000); Crammer
and Singer| (2002); Pujol et al. (2006))), the stop criterion is left to the user’s
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choice and our approach focuses on providing an ordering of the most interesting
dichotomizers to remove the classification uncertainties.

4. Experimental results

To illustrate our algorithm, we focus on the classification of different kinds
of materials, such as different types of plastics, papers, etc. To distinguish these
materials that may be very close in terms of appearance, the whole spectral
response in the near infrared range represents a major asset. Hyperspectral
imaging appears then as the most suitable source of information for their clas-
sification.

4.1. Data

For each pixel of a scene, hyperspectral sensors collect an almost contin-
uous spectrum of reflectance values in a chosen waveband. In this study, we
use two different hyperspectral cameras (called HSI; and HSI, sensors, both
tested in Veolia laboratories) with spectral resolution of respectively 212 and
275 wavelengths between 900 nm and 2500 nm. Classic preprocessing of the
spectra involves the computation of different derivative orders (0 and 1) of the
spectrum by applying the Savitzky-Golay filter, |Savitzky and Golay| (1964). For
each of these derivatives, the computation of the Principal Component Analysis
(PCA, Hotelling| (1933); |[Chen and Qian| (2011))) provides the input data for
the classifier. The PCA aims at reducing both the data dimensionality and the
correlation between the bands. The number of selected components is set to
represent 99% of the information, that corresponds to less than 20 components
in most cases.

The data considered in our experiments has been acquired by imaging spec-
imen boards with small material samples. In all, we have four boards called
Paper, Plasticl, Plastic2a, Plastic2b involving 9 classes, namely 7 polymers
classes: Acrylonitrile butadiene styrene (ABS), Polycarbonate (PC), Polyethy-
lene (PE), Polyethylene terephthalate (PET), Polylactic acid (PLA), Polypropy-
lene Polystyrene and Polyvinyl chloride (PP - PS - PVC), and rubber; and
2 fibrous classes (paper and cardboard). The average board size in pixels is
250 x 250.

4.2. Dichotomizers

Support Vector Machines (SVMs) introduced by |Cortes and Vapnik| (1995)
are commonly used for hyperspectral classification (e.g., Melgani and Bruzzone
(2004); [Kuo et al.| (2014))) due to their high classification accuracy and the
relative simplicity of their architecture design. SVMs being particularly efficient
for binary classification, we focus on them as our dichotomizers.

Since SVMs are learning based classifiers, three distinct datasets were ex-
tracted from the acquired images:
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e The training dataset has 1000 samples per class and is used for SVM
training. The training set allows for the estimation of each dichotomizer
parameters, determined by 5 fold cross validation and grid search, using
Gaussian kernels.

e The calibration dataset has 200 samples per class and is used for bba cal-
ibration. The calibration set allows for determining the logistic regression
used in the derivation of the bbas from the SVM scores (Section [3.2.1]).

e The wvalidation dataset has 1000 samples per class and is used for test and
performance estimation. In addition to samples from specimen boards,
the test dataset also include a board that presents real objects.

4.3. Experimental results

In order to analyze the proposed approach, several experiments have been
conducted. Our results are quantitatively evaluated in terms of Correct Classifi-
cation Rate (CCR) and F-measure criterion. We recall that for two classes, the
F-measure is equal to %, where TP is the number of true positives,
F'P the number of false positives and F'N the number of false negatives. The
higher these two criteria are, the better is the classification result. In case of
more than two classes, the multiclass F-measure is the average of the two class
F-measure values considering each class and its complementary.

4.8.1. Usefulness of additional dichotomizer ordering

First of all, we check the interest of the proposed selection of additional
dichotomizers based on analysis of the bbas of high conflict pixels. Our ba-
sic ECOC is the OVA involving 9 dense dichotomizers in our application case
with 9 classes. Figure [5| shows the increase of F-measure values (CCR values
are not shown since they are highly correlated and comments would be the
same) when adding one-versus-one dichotomizers one after another according
to different orderings. Among the five considered orderings, Random and Bi-
nary are examples of random orderings of the 36 available dichotomizers and
Performance is derived from the sorting of the dichotomizers according to the
validation set. The two last orderings are provided by the frequency analysis
of ambiguous pairs of classes, either on the whole set of pixels (Dense Ord)
or on 7 samples (Conflict Ord). On the two different HSI sensor data sets,
the ordering according to dichotomizer performance provides the latest (most
delayed) result improvement. This may be explained by the fact that the best
performing dichotomizers (chosen among the firsts) deal with classes already
well-distinguished by the basic ECOC, namely the less ambiguous classes. The
examples of random orderings allow for earlier F-measure improvement. Finally,
for both data sets, the proposed orderings show the earliest improvement, i.e.
the greatest increase achieved by the first chosen dichotomizers. Besides, the
advantage of the Conflict Ord is more pronounced for HS1; data than for HST;
data.
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Figure[6]shows the increase in the F-measure when adding the dichotomizers
in the proposed ordering Conflict Ord for different parameters: by varying the
threshold of the conflict value defining the subset of pixels 7 and by varying the
set of pixels affected by a new dichotomizer versus the considered ECOC variant,
namely global, semi-global or local (cf. Section . Note that with the local
version, only one (different) dichotomizer is added in each pixel. Then it is
not surprising that using more additional dichotomizers, the semi-global version
slightly outperforms the local version (but at the expense of more computational
resource). Comparing global and semi-global results, we note that they are
equivalent in terms of performance, whereas the number of processed pixels has
been much reduced in the semi-global approach: 40% and 33% of the whole
number of pixels, respectively. Furthermore, for the HSI> dataset, processing
only a subset of pixels (T) allows us to avoid degrading labels of pixels previously
correctly classified.

Finally, on Figures[5]and [6] the x-axis varies between 0 and 36 meaning that
at the end, the whole pool of possible dichotomizers has been considered. How-
ever, in practical applications, the dimension of the ECOC is bounded to lower
values, making the choice of the dichotomizer ordering all the more important.
For instance for the HST; data set, for 5 supplementary dichotomizers (14 in
all), F-measure indices increase by more than 2.5% and for 10 supplementary
dichotomizers (19 in total), the F-measure indices increase by more than 3.0%.
Such increases are rather satisfying since they represent respectively about 70%
and 85% of the whole increase when adding all the dichotomizers of the pool.

90

Random

— — —Bin

— == Performance
Dense Ord
Conflict Ord

89

F-measure
F-measure

P Random

sl — = =B
=== Performance
Dense Ord

Conflict Ord

80

. . . . . . . g5 . . . . . . . .
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Number of additional dichotomizers Number of additional dichotomizers
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Figure 5: Performance versus number of additional dichotomizers selected ac-
cording to different orderings. Note that there is a shift between sub-figure
y-axis.

4.8.2. Impact of the pool of dichotomizers
Then, we test our approach considering different pools of dichotomizers.
Figureshows the increase in performance (still versus the number of additional
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Figure 6: Global, Semi Global and Local strategies comparison.

dichotomizers) by considering either the pool of two-versus-all dichotomizers
((g) = 36 dichotomizers in all) or considering a subset of the trained two-versus-

2
two dichotomizers (25 dichotomizers among (Z) X % = 378 dichotomizers in
all).

We note that, in the case of the two-versus-all pool, the ordering of the
dichotomizers matters much less than in the previous case with the one-versus-
one pool. Besides, the curves are not monotonic, even if globally increasing.
Several points partially explain these observations.

Firstly, the two-versus-all dichotomizers may achieve lower performance than
the one-versus-one dichotomizers due to the fact that the binary problems in-
duced by the one-versus-one dichotomizers are simpler. Secondly, two-versus-all
dichotomizers separate numerous pairs at a time: each two-versus-all separates
2(N —2), whereas one-versus-one dichotomizers separates only 1 and one-versus-
all separates N —1, where IV is the number of classes. Considering a given pair of
classes (w1,ws), information for its class splitting can be provided by only one-
versus-one dichotomizer (namely w; versus ws), or one among (N — 2)(N — 3)
two-versus-two dichotomizers (namely {wq,w;} versus {wa,w;}, 1,5 ¢ {1,2},
i # j), or one among 2(N — 2) two-versus-all dichotomizers (namely {wq,w;}
versus Q\ {w1,w;}, or {ws,w; } versus Q\ {ws,w;}, @ ¢ {1,2}). Thus, even when
randomly picking a two-versus-all dichotomizer, there is a high probability that

it distinguishes one of the pairs of interest (probability 2%\;,7)2) = ]%,((%:21)) for a
2

given pair). Thus, for this pool, the ordering has much less impact than with
the one-versus-one pool. However note that the two-versus-two dichotomizers
involve other challenges in terms of learning step (e.g., imbalance in the class
representation for high numbers of classes, transfer when adding new classes).
Much more relevant to illustrate the benefits brought by our approach are
the results provided by the two-versus-two pool. For this test, the subset of
dichotomizers is composed of 13 ‘interesting’ dichotomizers (that separate the
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first ambiguous pairs designated by the conflict analysis), and 13 a priori not
useful dichotomizers (that separate the last ambiguous pairs of classes according
to the conflict analysis or that keep the ambiguous classes in the same side of
their separation border). Like in the case of the one-versus-one pool, the choice
of the ordering of the dichotomizers has a strong impact on the performance
when adding a small number of supplementary dichotomizers. Results derived
from HSI, data lead to similar conclusions, namely: the ordering matters less
when choosing a candidate among a pool of ‘dense’ dichotomizers that separate
several classes at once. On the other hand, more ‘dedicated’ dichotomizers
like two-versus-two or one-versus-one induce simpler binary problems and the
complementarity of the resulting errors is easier to understand and manipulate.
Thanks to the use of the belief functions decoding, adding sparse dichotomizers
involving only a few classes does not create the same bias as Hamming or loss-
based decodings. In our further experiments we use the one-versus-one pool
that is the simplest possible pool and need no additional criterion to decide
which dichotomizer to use for a given ambiguous pair (e.g. performance).
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Figure 7: Performance versus number of additional dichotomizers selected ac-
cording to different orderings for the two-vs-all and the two-vs-two pools of

dichotomizers.
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4.8.8. Benefit of multiorder data combination

According to our initial experiments and in the spirit of some authors who
customize the data or features used by each dichotomizer, Bai et al.|(2016)), we
propose to combine complementary information sources. In our case, highly
complementary sources are provided by the different derivation orders of the
hyperspectral spectra, Tachwali et al.| (2007). Figure illustrates, on two differ-
ent sample boards, the complementarity of the conflict maps (assessing subsets
Tpo and Tpy of tricky pixels) according to OVA applied to DO or D1 data
respectively.

Figure 8: Conflict maps from OVA classifier applied to D0 or D1 data, respec-
tively; case of two sample boards - HSI; Data

We propose to consider DO and D1 in the following way. From a given
basic ECOC used for processing the data in a given order of derivation (D0
or D1), the added dichotomizers are chosen in the other order of derivation
(D1 or DO respectively). We consider different basic ECOCs, including the
OVA, because it is both classic and involves a small number of dichotomizers,
and two data-driven ECOCs, namely CMSECOC, |Zhou et al.| (2016). The
CMSECOC idea is to gather ambiguous classes in order to build superclasses,
which are expected to be separable by OVA strategy. In|Zhou et al.| (2016)), the
ambiguous classes are selected according to a similarity matrix estimated using
ground truth data. Thereafter, each superclass is split using the OVO strategy
within it. We focus on these CMSECOC strategies since, using the proposed
belief-based decoding (cf. Section , they allow for high performance of the
basic ECOC results. However, since CMSECOC already involves one-versus-
one dichotomizers, the additional dichotomizers (also taken in one-versus-one
pool) process data corresponding to the complementary order of derivation. As

22



previously, to determine 7, both the conflict and the imprecision measures have
been used with a threshold of 0.2.

As displayed on Figure |§|7 the performance is improved (on CCR and F-
measure) when combining results on the two orders of derivation. On the HSI;
dataset, DO and D1 have a high complementarity of errors (as seen on the con-
flict maps of Figure . Using the OVA as basic ECOC, the combination with
N =5 dichotomizers (for a total of 14 classifiers) from a different order than the
OVA improves the CCR by about 5% when starting with D0 and by 4% when
starting with D1 compared to sticking to the same order. The mixed combina-
tions, starting from D1 and DO, reach about 92% and 90% respectively when
adding 20 dichotomizers and up. On the HSIy dataset, there is a dissymme-
try between the performance achieved by the two orders: the basic D1 results
achieve almost 8% higher performance than the basic DO results. However,
thanks to complementarity, adding the information from the DO dichotomizer
improves the results compared to adding information from the same order. Us-
ing D1 for the basic OVA is the most efficient combination, since it allows for
reaching a correct classification rate of 97% with seven dichotomizers added.
Now, the most probative of the conflict-based ordering are the results obtained
when using the DO for basic OVA since it allows for a +7% improvement on the
CCR when adding seven dichotomizers.

Using CMSECOC as M7, we get the same global tendency for the perfor-
mance curves on both datasets. Specifically, the results at the output of M;
decoding are higher than previously. This is due to our decoding, since using
Hamming decoding like in [Zhou et al.| (2016]), performance indices are about
10% lower: Hamming decoding is not efficient in the case of numerous sparse
classifiers that are not equally distributed among classes. Note also that depend-
ing on the data considered (D0 or D1, HSI; or HSI5), the corresponding basic
CMSECOC varies, in particular in terms of code length. A rather interesting
point is that achieved performance for about 25 dichotomizers in all is much
more robust to the basic ECOC (CMSECOC or OVA) than to the considered
data and, for HSI;, the ordering in which they are considered.

5. Conclusion and perspectives

This work studied the relevance of the belief function theory (BFT) frame-
work for the ECOC field. This usefulness was clearly shown for both coding and
decoding issues. Indeed, firstly the use of BFT allows us to propose a decod-
ing step that models each dichotomizer in the ECOC matrix as an individual
source of information. Thanks to the manipulation of compound hypotheses,
we were able to model the exact information provided by each dichotomizer,
even the sparse ones. Our method therefore uses the belief function framework
to elegantly model concepts which are otherwise difficult to formalize. Secondly,
BF'T provides us with indices particularly relevant for detecting the potentially
unreliable decisions, namely the conflict and the imprecision measures. The
analysis of these indices and of the basic belief assignment at the output of the
decoding step allows us to propose a new method to extend an ECOC matrix in
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Figure 9: Performance (CCR and F-measure) versus number of additional di-
chotomizers for different combination of D0 and D1 sources.

order to solve the remaining ambiguities. Several variants of this method were
proposed depending on the chosen degree of stationarity of the ECOC matrix
used. The conflict and imprecision measures are intrinsic indices, so they allow
for auto-evaluation to detect outliers or drifts from the training set. Our ap-
proach was tested on hyperspectral data, acquired from two different sensors,
to classify nine different types of material. We clearly showed the benefit of
extending a basic ECOC matrix to derive a compact ECOC with high perfor-
mance. The semi-global variant that processes only the pixels detected as tricky
(about 35% of the image in our case) seems to be a good compromise since it
achieves similar performance as the global variant (processing all the pixels).
The absence of requirement for the ground truth to build the ECOC extension
is obviously a major strength of our approach. Finally, in order to increase the
complementarity of the dichotomizer outputs, we propose to combine different
features extracted from the data (derivative orders in our case). The obtained
results outperform in a significant way any other results (CCR increase between
2% and 8%, depending on the considered sensor and basic ECOC).

Future work will investigate the definition of a measure to assess the redun-

24



dancy of the discernability of a given class in a given ECOC matrix. Indeed,
we saw that some classes were more difficult to separate from others. For these
classes, we aim at increasing the number of independent subsets of dichotomiz-
ers allowing their separation (i.e., providing an unambiguous codeword). In
a deeper analysis, we would also like to estimate the complementarity of er-
rors between the previous independent subsets of dichotomizers. Indeed, the
combination of these may remove errors only if they are not correlated (classi-
fication performance is strongly related to the complementarity of the errors or
ambiguities of subsets of dichotomizers viewed as individual classifiers).

In terms of application, we will investigate how classification quality control
may be related to the evolution of the percentage of detected tricky pixels. The
basic idea is that an anomalous increase in this percentage should alert the user.
The usefulness of the proposed indices is that they do not require a ground truth,
even though this may not be the case for the action ensuing a warning, e.g. a
new training on updated data.
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