
Probabilistic and Physics-Informed Machine
Learning for Predictive Maintenance with Time

Series Data
Phan-Anh Vu1∗, Emanuel Aldea2, Mounira Bouarroudj3, Sylvie Le Hégarat-Mascle2

1 Grenoble Alpes University, CEA LIST, CNRS, Grenoble INP, GIPSA-Lab, Grenoble 38000, France
2 Paris-Saclay University, CNRS, SATIE Laboratory, Gif-sur-Yvette 91190, France

3 Paris EST Créteil University, CNRS, SATIE Laboratory, Gif-sur-Yvette 91190, France

Abstract
Physics-informed neural networks are capable of

learning from both observation data and the underlying
physical laws. Meanwhile, their implementation in real
application settings requires additional considerations
related to multi-objective optimization of variables with
vastly different scales. Besides, many applications benefit
from having well-calibrated uncertainty estimate along
with the prediction. In this study, we examine physics-
informed neural network for a predictive maintenance
application with times series data, using a physical fatigue
crack propagation model from mechanical engineering.
Our goal is to attain good predictive performance, while at
the same time producing correct uncertainty intervals and
limiting computation cost. Moreover, we also consider
as baselines some established uncertainty quantification
techniques in deep learning, and we provide a detailed
quantitative assessment of their calibration.

1. Introduction

Nowadays, the power electronic sector is the strongest
growth market in transport applications. Semiconductor-
based power switches are rapidly replacing conventional
electromechanical relays in most of the main vehicle
functions as well as in comfort, safety and communication
applications. An additional growing segment is repre-
sented by the market for alternative propulsion technolo-
gies, in line with the new regulations for road transport
aimed at the reduction of greenhouse gas emission level
(30% lower by 2030 in the EU), which results in the
prohibition of the marketing of combustion engine cars
from 2035 in Europe. This trend is seen nowadays with
more and more focus on electric vehicle concepts. The rise
in electronic technology in automotive inevitably creates
new demands in terms of low costs, operation under
extreme environmental conditions (temperature, humidity,
vibration, etc.), greater system power density, increasing
miniaturization and ensure high levels of reliability. This
requires an in-depth knowledge of the possible evolution

*This work was conducted while the first author was doing an
internship at SATIE Laboratory

of electronic components as a function of time and op-
erating conditions. Consequently, development of reliable
Remaining Useful Lifetime (RUL) models is of primary
importance.

In power electronic devices, lifetime is usually obtained
by subjecting them to accelerated ageing tests. The results
of these tests are then extrapolated to normal operating
conditions [1]. However, these empirical models do not
accurately describe the local degradation mechanisms
leading to the degradation of the device under study.
There is therefore a significant gap between the prediction
by this approach and the observation made in the real
conditions. Indeed, these models can only deal with one
failure mechanism at a time, known a priori. To address
these limitations, the second approach is based on a
detailed analysis of local failure mechanisms thanks to a
detailed understanding of local damage physics. It allows
to acquire a precise knowledge of the causes generating
the beginning of degradation and the evolution of this
degradation leading to the failure. This approach is based
on the analysis of physical variables or quantities such as
stress, strain or energy leading to failure. These variables
are usually obtained by multi-scale finite element sim-
ulations with multi-physics coupling between electrical,
thermal and mechanical [2], [3], [4]. However, finite
element simulations are time-consuming and sensitive to
mesh size and material properties which are often not
known. This last point represents a considerable limitation
for physics-based models because the lack of knowledge
of the exact behavior laws of materials used in power elec-
tronics leads to an incorrect evaluation of their lifetime.
Model reduction methods can be considered to simplify
the parametric analysis [5], but they do not avoid the
inaccuracies related to the biases of the physical model
used. Physics-based analytical models are also proposed
in literature for the online estimation of remaining useful
lifetime. They utilize a degradation model that predicts
the future state based on input that describes the current
system state and the expected load levels on the sys-
tem [6], [7]. In this paper we propose to use a recently
proposed mixed approach using both experimental data

and physical models based on stochastic methods and deep
learning techniques (Physics-informed neural networks).
The objective is to increase the prediction capacity while
being economic in terms of computing time.

2. Problem statement

In an IGBT power module subjected to ageing under
power cycling wire-bond lift-off is a dominant degrada-
tion mode [8], [9]. Monitoring of the on-state voltage
VCE continuously during aging reflect the state of crack
evolution in the contact wire bond-metallization [10],
[2]. As illustration, evolution of VCE until reaching the
failure criteria of the IGBT modules (corresponding to 5%
increase in VCE) is depicted on Figure 1. The analysis by
microsection reveals that cracks appear at the interfaces
and begin to propagate inside the wire bonds until lift
off. The idea explored in this paper is to use the Physics-
informed neural networks (PINN) to predict the evolution
of cracks propagation as a function of number of cycles
using VCE measurements as input data.

Figure 1: Evolution of collector-emitter voltage VCE for
∆Tj = 110◦C, Tjmin0 = 55◦C and tON/tOFF = 3s/6s [2].

3. Physics-informed machine learning

A. Problem formulation

With Physics-Informed Neural Network (PINN) [11],
[12], the goal is to leverage information from both
observation data and the underlying physical law. An
observation dataset contains n_obs measurements, indexed
by i, for input x and output y: D = {xi,yi}; i = 1...n_obs.
We assume there is a function h mapping input x to true
output y: y = h(x).

The output y need to satisfy some constraints following
some physical law. Usually, the physical law involves a
function of differential operator of order 1 or greater:

f∇(y) = f
(

∇xy,∇2
xy, ...,∇d

x y
)
= Φ(y) (1)

∇d
x y is the derivative of order d. Φ(y) is a function defined

by the physical laws. We introduce a shorthand notation
for the differential part: f∇(y) = f

(
∇xy,∇2

xy, ...,∇d
x y
)
.

The model is an approximator to the true function ĥ,
parameterized by w, which ingests input x and produces
prediction ŷ:

ŷ = ĥ(x;w) (2)

The predictions should match the observations. Thus we
want to minimize the difference between these two quanti-
ties, which is our observation loss. We commonly measure
the squared difference, or Mean Squared Error (MSE):

Lobs =
n_obs

∑
i=1

(ŷi − yi)
2 (3)

On the other hand, the predictions also need to satisfy
the physical law. The physical law is defined for the
true output y, but at test time we only have prediction
ŷ. Therefore, we enforce the physics constraint on the
prediction, which is an approximation to the true target.
Analogous to the observation loss, we aim to minimize
the physics loss:

Lphy =
n_phy

∑
i=1

(f∇(ŷi)−Φ(ŷi))
2 (4)

These 2 losses lead us to a multi-objective optimization
problem.

B. Addressing the multi objective optimization

Multiple objectives can be combined by a simple scalar-
ization. In a basic static scalarization scheme, we consider
a weighted linear combination of the two terms above:

L = λobsLobs +λphyLphy (5)

Finding the right value for the coefficients is critical, but
it may be difficult in practice, depending on the specificity
of the considered application. In a favorable situation,
λobs and λphy may be optimized successfully along with
other learning hyper-parameters during training. However,
in some cases there are no adequate scalar coefficients
leading to acceptable performance, due to some specific
numerical behavior such as the physical law Φ(y) impos-
ing a strong derivative on the model. As a consequence,
a small deviation leads to a large penalty, adding thus
significant instability to the learning process. Among the
potential solutions to this problem, we consider here
Magnitude Normalization [13], which is a heuristic to
dynamically and automatically balance these two terms.
The magnitude of the true target is used as coefficient for

each term in the loss summation:

λobs =
1

∑
n_obs
i=1 y2

i

(6)

λphy =
1

∑
n_phy
i=1 (| f∇(ŷi)|+ |Φ(ŷi)|)2

(7)

L =
Lobs

∑
n_obs
i=1 y2

i

+
Lphy

∑
n_phy
i=1 (| f∇(ŷi)|+ |Φ(ŷi)|)2

(8)

=
∑

n_obs
i=1 (ŷi − yi)

2

∑
n_obs
i=1 y2

i

+
∑

n_phy
i=1 (f∇(ŷi)−Φ(ŷi))

2

∑
n_phy
i=1 (| f∇(ŷi)|+ |Φ(ŷi)|)2

(9)

A closely related method is Inverse Dirichlet Weighting
[14], which uses the gradient variance to balance the
terms in the loss. In our experiments, we adopt Magnitude
Normalization, because it produces comparable result to
Inverse Dirichlet Weighting, while requiring less compu-
tation.

C. The considered physical constraint

We focus on the application of predictive maintenance
with time series data. More specifically, we try to predict
the fatigue crack growth of a power converter component.
The component wears down with loading cycles during
usage. We seek to model the crack length as a function
of the number of loading cycle.

Paris’ law [15] is a common choice to model fatigue
crack propagation in mechanic. Here, a is crack length, N
is number of cycle, C and m are material properties, and
∆σ is the stress intensity.

da
dN

=C(∆σ
√

πa)m (10)

Matching the general notation used in previous sections,
we have this correspondence for the input, output, differ-
ential function and physical law:

x = N;y = a; f∇(y) =
da
dN

;Φ(y) =C(∆σ
√

πa)m

By integrating both side with initial crack length a0,
we can find an analytical form of the crack length as a
function of loading cycle:

a(N) =
[
NC

(
1− m

2

)(
∆σ

√
π
)m

+a
1−m

2
0

] 2
2−m

(11)

Observation datapoints are generated with Equation 11,
by choosing regular samples of number of cycle N, and
adding noise to the calculated crack length a(N). The
training procedure will use Equation 10 as the physics
constraint. The parameters of Paris’ law are fixed at:
C = exp(−23),m = 4,∆σ = 75,a0 = 0.01, following [16].
The experimental section contains multiple illustrations
of data generating for training and testing following the
procedure above.

4. Uncertainty quantification

In many applications, the ability to provide calibrated
uncertainty measure along with prediction is invaluable.
We briefly review a quantitative metric to evaluate uncer-
tainty calibration, along with some established techniques
to produce prediction interval.

A. Evaluate uncertainty calibration for regression

For a regression problem, we typically assume a Gaus-
sian distribution over the target. Thus, the predictive dis-
tribution can be described with two parameters: mean and
variance. A well-calibrated predictive distribution should
match the true distribution of the target. For example,
a 95% confidence interval around the predictive mean
should contain the true target value 95% of the time.
We can construct a calibration metric by iterating over
confidence levels from 0 to 1, and count the proportion of
true target lying inside the confidence interval at this level
(illustrated in Figure 2, suggested by [17], implemented
by [18]). A perfect calibration corresponds to the diagonal
line. The miscalibration area between the two lines is a
measure of calibration error.

Meanwhile, a model can always reduce the miscalibra-
tion area by inflating the prediction interval. A useful pre-
diction interval should be as small as possible. Therefore,
we also look for the smallest measure of sharpness, or the
average width of the prediction interval.

B. Monte Carlo Dropout (MCDropout)

Activating dropout at test time [19] is a simple tech-
nique to approximate the posterior distribution of model
parameters with samples. The main advantages of this
method are ease of implementation and speed. To obtain
a more consistent prediction interval, we use the same
binary mask for each forward pass through the whole
dataset.

C. Deep Ensemble

With ensemble methods, uncertainty quantification is
based on predictive variance among individual models
in the collection. Each individual model can also be
considered as a sample from the parameter distribution.
For regression problems, the Deep Ensemble authors [20]
suggest an augmented version of the individual model.
Under the assumption that the observation output follows a
Gaussian distribution, the model will produce a predictive
mean µ(x) and predictive variance σ2(x) for each input.
The training objective is to minimize the negative log
likelihood of the observation:

− log p(y|x) =− log N (y|µ(x),σ2(x)) (12)

=
1
2

log2π+ logσ(x)+
(y−µ(x))2

2σ2(x)
(13)

0.00 0.25 0.50 0.75 1.00
Predicted Proportion in Interval

0.0

0.2

0.4

0.6

0.8

1.0
Ob

se
rv

ed
 P

ro
po

rti
on

 in
 In

te
rv

al

Miscalibration area = 0.48

Average Calibration

(a) MCDropout

0.00 0.25 0.50 0.75 1.00
Predicted Proportion in Interval

0.0

0.2

0.4

0.6

0.8

1.0

Ob
se

rv
ed

 P
ro

po
rti

on
 in

 In
te

rv
al

Miscalibration area = 0.40

Average Calibration

(b) MCDropout same mask

0.00 0.25 0.50 0.75 1.00
Predicted Proportion in Interval

0.0

0.2

0.4

0.6

0.8

1.0

Ob
se

rv
ed

 P
ro

po
rti

on
 in

 In
te

rv
al

Miscalibration area = 0.45

Average Calibration

(c) Bayes by backprop

0.00 0.25 0.50 0.75 1.00
Predicted Proportion in Interval

0.0

0.2

0.4

0.6

0.8

1.0

Ob
se

rv
ed

 P
ro

po
rti

on
 in

 In
te

rv
al

Miscalibration area = 0.32

Average Calibration

(d) Deep ensemble

Figure 2: Miscalibration plot for 100 samples

By setting to 0 the derivative with respect to σ(x), we
obtain the optimum:

d
d σ(x)

(− log p(y|x)) = 0

=⇒ 1
σ(x)

− (y−µ(x))2 1
σ3(x)

= 0

=⇒ σ
2(x) = (y−µ(x))2

As a noteworthy remark, this objective encourages the
model to correctly estimate its own error. Deep ensemble
is quite simple to implement. The main challenge is to
ensure the diversity of the member models, which is all
the more difficult for small model and small dataset.

By averaging the predictions from individual models
under the Gaussian likelihood assumption, we obtain a
Gaussian mixture ensemble with uniform contribution.
Here, M is the number of members in the ensemble.

µ(x) =
1
M

M

∑
i=1

µi(x)

σ
2(x) =

1
M

M

∑
i=1

[σ2
i (x)+µ2

i (x)]−µ2(x)

D. Bayes by Backprop

Bayesian Neural Network considers model parameters
as random variables instead of a single value. Bayes by
backprop [21] characterizes each model parameter w by
a Gaussian distribution w ∼ N (µ,σ2). Each weight and
bias now has an associated mean and variance, instead of
having a single value. The goal of Bayesian inference is
to infer the posterior distribution over the model param-
eters given the data, using the likelihood and the prior
distribution of the parameters.

p(w|D) =
p(D|w)p(w)∫
p(D|w)p(w)dw

(14)

We often choose simple distributions such as Gaussian
or uniform for the parameter prior p(w). For regression
problem, the likelihood p(D|w) is usually a Gaussian
centered on the prediction ŷ with fixed likelihood variance
σ2

l : p(D|w) = N (ŷ|y,σ2
l).

Due to intractability of the normalization in the denom-
inator, we have to approximate the true posterior p(w|D)
with a simpler variational distribution q(w;θ). For this
specific model, the variational parameters are the means
and variances of all the weights in our model: θ= {µ,σ2}.
To find a good approximation, we minimize the Kullback-
Leibler divergence between the variational approximation
and the true posterior distribution.

θ
∗ = argmin

θ
KL[q(w;θ)||p(w|D)] (15)

= argmin
θ

∫
q(w;θ) log

q(w;θ)p(D)

p(w;D)
dw (16)

= argmin
θ

∫
q(w;θ) log

q(w;θ)

p(D|w)p(w)
dw (17)

= argmin
θ

∫
q(w;θ) log

q(w;θ)

p(w)
dw

−
∫

q(w;θ) log p(D|w)dw (18)

= argmin
θ

KL[q(w;θ)||p(w)]−Eq(w;θ)[log p(D|w)] (19)

These 2 terms, log likelihood and divergence, may need
appropriate scaling. The β-VAE authors [22] suggest
adding a coefficient β in front of the divergence term. This
is the objective to train Bayes by backprop model. Finding
the right choice of coefficient β requires experimenting
with different values.

θ
∗ = argmin

θ
βKL[q(w;θ)||p(w)]−Eq(w;θ)[log p(D|w)]

(20)

5. Experiment
Experiments are repeated with 3 different random seeds.

Regarding the uncertainty quantification methods, the
sample size for training and inference is 20 and 100.

A. Dataset

In many engineering applications, data collection is
very costly, both in terms of time and resource. For
instance, testing a power converter component often re-
quires accelerated aging test and destructive measurement

RMSE

Miscalibration

SharpnessNLL

Log Minutes 1.06

1.98

2.9

0.17
0.29

0.4

0.53

0.84

1.16

1.72

2.83

3.94

-3.44
-1.07

1.29

Ensemble 20
MCDropout 20

MCDropout* 20
Bayes Backprop 20

(a) 20 samples

RMSE

Miscalibration

SharpnessNLL

Log Minutes 1.15

1.97

2.8

0.32
0.39

0.46

0.58

0.94

1.3

2.34

3.08

3.82

-2.97
-0.15

2.68

Ensemble 100
MCDropout 100

MCDropout* 100
Bayes Backprop 100

(b) 100 samples

Figure 3: Metrics for uncertainty methods. Lower is better. MCDropout* = Monte Carlo Dropout with same mask.
NLL = Negative Log Likelihood. RMSE = Root Mean Squared Error. Unit for Training time is log(Minutes). The
scale for each axis and figure is different.

procedure. Thus, the quantity of data is very limited. To
simulate this context, we generate 150 data points for
number of cycle, and their corresponding crack length
according to Paris’ model. The cycles start at 0, end at
3000, with a space of 20 in-between. We add uniform
noise from the interval [-0.01, 0.01] to the generated crack
lengths. The first 120 points are used for training, and the
last 30 points are kept for testing. This train test split
simulates the predictive maintenance use case. Regarding
the physics constraint, we generate 100 samples at regular
interval from the same input domain (cycle 0 to 3000).

B. Physics-informed model training

Due to the small size of the datasets, the experiments
are performed with small models. Unless otherwise stated,
the model architecture uses Linear layers with Tanh acti-
vation. The number of nodes are [1, 4, 4, 1]. Input and
output layers have dimension = 1. There are 2 in-between
hidden layers with 4 nodes each. The optimizer is Adam
[23] with learning rate 0.01 and weight decay 10−8. We
use Ray Tune [24], a hyperparameter optimization library,
to search for good values of hyperparameters. Training
time is approximately 3 seconds for 10000 epochs with
Intel Xeon CPU 2.30GHz.

C. Monte Carlo Dropout

The default implementation of Dropout [25] in PyTorch
[26] applies a different mask for each input. Due to this
behavior, the prediction interval is very sensitive to the
noise in data (Figure 4). Using the same mask for all
datapoints leads to a more consistent prediction interval
(Figure 5).

In all repeated experiment trials, predictions from both
variants of MCDropout are always too low compared

to true test target. The result sometimes improves when
exponentiating the prediction output, and reducing the
number of training epochs to 180. However, the prediction
becomes very unstable, and stray far away from the true
test target very often.

Dropout probability is set at 5%. Test inference are
performed with 100 samples and 20 samples (100 forward
passes with dropout activated). Since the dropout prob-
ability is 1/20, taking 20 samples decreases the chance
of having 0 variance. Figure 2a and Figure 2b contain
calibration area plots.

D. Deep ensemble

The models in the ensemble share the same architecture
as the physics-informed model. The output of each model
contains 2 values: mean and variance of the prediction.
Figure 6 shows the prediction interval and Figure 2d
shows the miscalibration area.

E. Bayes by backprop

The prior distribution for the mean and variance of
model weights is a Gaussian with mean 0 and variance
1. For the mean and variance of model bias, the prior
is a uniform in the interval [-1, 1]. To enforce positive
constraint on the standard deviation, we model the log
standard deviation and exponentiate to recover the value.
The likelihood variance σ2

l is set to 1. β coefficient
for the KL divergence term is 10−6. The number of
training epochs is 10000. Our implementation of Bayes
by backprop is quite naive, and leaves out many possible
improvements. Figure 7 shows the prediction interval and
Figure 2c shows the miscalibration area.

Table 1: Uncertainty quantification test metrics. Lower is better. Training time is in minute

Method Negative Log Likeli-
hood

Root Mean Squared
Error

Miscalibration area Sharpness Training time

Ensemble 20 1.7466 0.3970 0.2912 0.3190 1.3250
Ensemble 100 1.9934 0.3995 0.3172 0.2796 6.9034
MCDropout 100 3.8454 3.2928 0.4754 1.5098 0.0080
MCDropout 20 4.4382 3.4754 0.4710 1.3365 0.0080
MCDropout* 100 3.0755 0.8375 0.4007 0.4822 0.0085
MCDropout* 20 4.5833 0.8075 0.3970 0.4706 0.0085
Bayes Backprop 20 0.7713 0.1728 0.0727 0.2679 27.5281
Bayes Backprop 100 4.1510 1.3005 0.4525 0.4069 149.0496

6. Discussion

Figure 3 and Table 1 contain a comparison of the
uncertainty quantification methods. Ensemble appears to
be the best overall methods, offering very competitive
performance on all metrics at a reasonable training cost.
Furthermore, a small ensemble size such as 20 or 10
already provides strong performance. In our experimental
case, we only notice slight variations between 20 and
100 samples. Ensemble is also the most stable method,
ensemble test prediction consistently matches the test
target in 3 repeated trials with different random seeds.

Bayes by backprop comes in second in terms of overall
performance and stability. It often provides the narrowest
prediction interval. Out of 3 runs with different random
seed, Bayes by backprop with 20 samples fails to match
the test target once. This is the most costly method in
terms of computation cost. Although our implementation
leaves many rooms for improvement, the performance and
stability of Bayes by backprop are insufficient to motivate
the effort.

Both versions of Dropout are unstable, they fail to
match the test target quite frequently. It is very intriguing
to see that using the same number of training epochs
as the deterministic physics-informed model causes the
MCDropout models to significantly overshoot the test
target. We suspect that in the small data small model
regime, randomly turning off the parameters will cause
the prediction to swing wildly. The same mask variant of
MCDropout scores better than the different mask version.

7. Conclusion

The experiments demonstrate that we can learn from
small observation dataset by incorporating physical prin-
ciples. The actual implementation may require additional
effort to solve multi-objective optimization problems with
different variable scales. Therefore, we need appropriate
rescaling calculation, and suitable balancing scheme for
the coefficients of multiple loss terms with the magnitude
of their gradient. Among the uncertainty quantification
methods, ensemble mixture is the best overall performer.

A quantitative metric for uncertainty calibration is
crucial to evaluate different models. Nevertheless, the

miscalibration area metric that we use is a post-hoc
analysis to assess a model after it has been trained. As
an interesting direction for future work, we would like to
somehow include a calibration metric into the optimization
process itself. By doing so, the model is encouraged
to produce well-calibrated prediction interval during the
training process.

8. Acknowledgements

We would like to thank these collaborators for their
help: Mohamad Nazar and Ali Ibrahim from SATIE Lab,
Gustave Eiffel University, François Landes from LISN,
Université Paris Saclay.

References

[1] Uwe Scheuermann and Marion Junghaenel. Limitation of power
module lifetime derived from active power cycling tests. In
CIPS 2018; 10th International Conference on Integrated Power
Electronics Systems, pages 1–10. VDE, 2018.

[2] Nausicaa Dornic, Ali Ibrahim, Zoubir Khatir, Son-Ha Tran, J-P
Ousten, Jeffrey Ewanchuk, and Stefan Mollov. Analysis of the
degradation mechanisms occurring in the topside interconnections
of igbt power devices during power cycling. Microelectronics
Reliability, 88:462–469, 2018.

[3] P Steinhorst, Tilo Poller, and Josef Lutz. Approach of a phys-
ically based lifetime model for solder layers in power modules.
Microelectronics Reliability, 53(9-11):1199–1202, 2013.

[4] Koji Sasaki, Naoko Iwasa, Toshiki Kurosu, Katsuaki Saito, Yoshi-
hiko Koike, Yukio Kamita, and Yasushi Toyoda. Thermal and
structural simulation techniques for estimating fatigue life of an
igbt module. In 2008 20th International Symposium on Power
Semiconductor Devices and IC’s, pages 181–184. IEEE, 2008.

[5] Louis Schuler, Ludovic Chamoin, Zoubir Khatir, Mounira Berkani,
Merouane Ouhab, and Nicolas Degrenne. A reduced model
based on proper generalized decomposition for the fast analysis
of igbt power modules lifetime. Journal of Electronic Packaging,
144(3):031013, 2022.

[6] Mohamad Nazar, Ali Ibrahim, Zoubir Khatir, Nicolas Degrenne,
and Zeina Al Masry. Remaining useful lifetime estimation for
electronic power modules using an analytical degradation model.
In Fifth European Conference of the PHM Society 2020 (The
Prognostics and Health Management), volume 5, page 10, 2020.

[7] Nicolas Degrenne and Stefan Mollov. Diagnostics and prognostics
of wire-bonded power semi-conductor modules subject to dc power
cycling with physically-inspired models and particle filter. In PHM
Society European Conference, volume 4, 2018.

[8] Yasushi Yamada, Yoshikazu Takaku, Yuji Yagi, Ikuo Nakagawa,
Takashi Atsumi, Mikio Shirai, Ikuo Ohnuma, and Kiyohito Ishida.
Reliability of wire-bonding and solder joint for high temperature
operation of power semiconductor device. Microelectronics Relia-
bility, 47(12):2147–2151, 2007.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
cycle

0.0

2.5

5.0

7.5

10.0

12.5
cr

ac
k

le
ng

th
MCDropout 20

train target
test target
train prediction mean
train CI 0.95
test prediction mean
test CI 0.95

(a) 20 samples

0.0 0.2 0.4 0.6 0.8 1.0 1.2
cycle

0.0

2.5

5.0

7.5

10.0

12.5

cr
ac

k
le

ng
th

MCDropout 100
train target
test target
train prediction mean
train CI 0.95
test prediction mean
test CI 0.95

(b) 100 samples

Figure 4: Monte Carlo Dropout prediction interval with different mask for each input

0.0 0.2 0.4 0.6 0.8 1.0 1.2
cycle

0

1

2

3

4

cr
ac

k
le

ng
th

MCDropout same mask 20
train target
test target
train prediction mean
train CI 0.95
test prediction mean
test CI 0.95

(a) 20 samples

0.0 0.2 0.4 0.6 0.8 1.0 1.2
cycle

0

1

2

3

4

cr
ac

k
le

ng
th

MCDropout same mask 100
train target
test target
train prediction mean
train CI 0.95
test prediction mean
test CI 0.95

(b) 100 samples

Figure 5: Monte Carlo Dropout prediction interval with same mask for all input

0.0 0.2 0.4 0.6 0.8 1.0 1.2
cycle

0

1

2

3

4

5

cr
ac

k
le

ng
th

Ensemble Mixture 20
train target
test target
train prediction mean
test prediction mean
train CI 0.95
test CI 0.95

(a) 20 samples

0.0 0.2 0.4 0.6 0.8 1.0 1.2
cycle

0

1

2

3

4

5

cr
ac

k
le

ng
th

Ensemble Mixture 100
train target
test target
train prediction mean
test prediction mean
train CI 0.95
test CI 0.95

(b) 100 samples

Figure 6: Ensemble mixture prediction interval

[9] Pearl A Agyakwa, Li Yang, Elaheh Arjmand, Paul Evans, Martin R
Corfield, and C Mark Johnson. Damage evolution in al wire bonds
subjected to a junction temperature fluctuation of 30 k. Journal of
Electronic Materials, 45:3659–3672, 2016.

[10] Vanessa Smet, Francois Forest, Jean-Jacques Huselstein, Frédéric
Richardeau, Zoubir Khatir, Stéphane Lefebvre, and Mounira
Berkani. Ageing and failure modes of igbt modules in high-
temperature power cycling. IEEE transactions on industrial elec-
tronics, 58(10):4931–4941, 2011.

[11] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis.
Physics informed deep learning (part i): Data-driven solutions
of nonlinear partial differential equations. arXiv preprint
arXiv:1711.10561, 2017.

[12] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis.

Physics informed deep learning (part ii): Data-driven discov-
ery of nonlinear partial differential equations. arXiv preprint
arXiv:1711.10566, 2017.

[13] Remco van der Meer, Cornelis W. Oosterlee, and Anastasia
Borovykh. Optimally weighted loss functions for solving pdes
with neural networks. J. Comput. Appl. Math., 405(C), may 2022.

[14] Suryanarayana Maddu, Dominik Sturm, Christian L Müller, and
Ivo F Sbalzarini. Inverse dirichlet weighting enables reliable
training of physics informed neural networks. Machine Learning:
Science and Technology, 3(1):015026, 2022.

[15] Paul Paris and Fazil Erdogan. A critical analysis of crack
propagation laws. 1963.

[16] Arun Subramaniyan. Industrial AI: BHGE’s physics-based,
probabilistic deep learning using tensorflow probability

0.0 0.2 0.4 0.6 0.8 1.0 1.2
cycle

0

1

2

3

4

5
cr

ac
k

le
ng

th
Bayes Backprop 20

train target
test target
train prediction mean
train CI 0.95
test prediction mean
test CI 0.95

(a) 20 samples

0.0 0.2 0.4 0.6 0.8 1.0 1.2
cycle

0

2

4

6

8

cr
ac

k
le

ng
th

Bayes Backprop 100
train target
test target
train prediction mean
train CI 0.95
test prediction mean
test CI 0.95

(b) 100 samples

Figure 7: Bayes by backprop prediction inverval

- part 1, 2018. https://blog.tensorflow.org/2018/10/
industrial-ai-bhges-physics-based.html.

[17] Volodymyr Kuleshov, Nathan Fenner, and Stefano Ermon. Accu-
rate uncertainties for deep learning using calibrated regression. In
International conference on machine learning, pages 2796–2804.
PMLR, 2018.

[18] Youngseog Chung, Ian Char, Han Guo, Jeff Schneider, and Willie
Neiswanger. Uncertainty toolbox: an open-source library for
assessing, visualizing, and improving uncertainty quantification.
arXiv preprint arXiv:2109.10254, 2021.

[19] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian ap-
proximation: Representing model uncertainty in deep learning. In
international conference on machine learning, pages 1050–1059.
PMLR, 2016.

[20] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell.
Simple and scalable predictive uncertainty estimation using deep
ensembles. Advances in neural information processing systems,
30, 2017.

[21] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan
Wierstra. Weight uncertainty in neural network. In International

conference on machine learning, pages 1613–1622. PMLR, 2015.
[22] Irina Higgins, Loïc Matthey, Arka Pal, Christopher P. Burgess,

Xavier Glorot, Matthew M. Botvinick, Shakir Mohamed, and
Alexander Lerchner. beta-vae: Learning basic visual concepts with
a constrained variational framework. In ICLR, 2017.

[23] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[24] Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz,
Joseph E Gonzalez, and Ion Stoica. Tune: A research platform
for distributed model selection and training. arXiv preprint
arXiv:1807.05118, 2018.

[25] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way to
prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

[26] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information
processing systems, 32, 2019.

https://blog.tensorflow.org/2018/10/industrial-ai-bhges-physics-based.html
https://blog.tensorflow.org/2018/10/industrial-ai-bhges-physics-based.html

	Introduction
	Problem statement
	Physics-informed machine learning
	Problem formulation
	Addressing the multi objective optimization
	The considered physical constraint

	Uncertainty quantification
	Evaluate uncertainty calibration for regression
	Monte Carlo Dropout (MCDropout)
	Deep Ensemble
	Bayes by Backprop

	Experiment
	Dataset
	Physics-informed model training
	Monte Carlo Dropout
	Deep ensemble
	Bayes by backprop

	Discussion
	Conclusion
	Acknowledgements
	References

