Basics of molecular modelling

M2 SERP-Chem Fabien Cailliez LCP – Bât 349 fabien.cailliez@u-psud.fr

M2 SERP-Chem 2013-2014

Simulation Tools

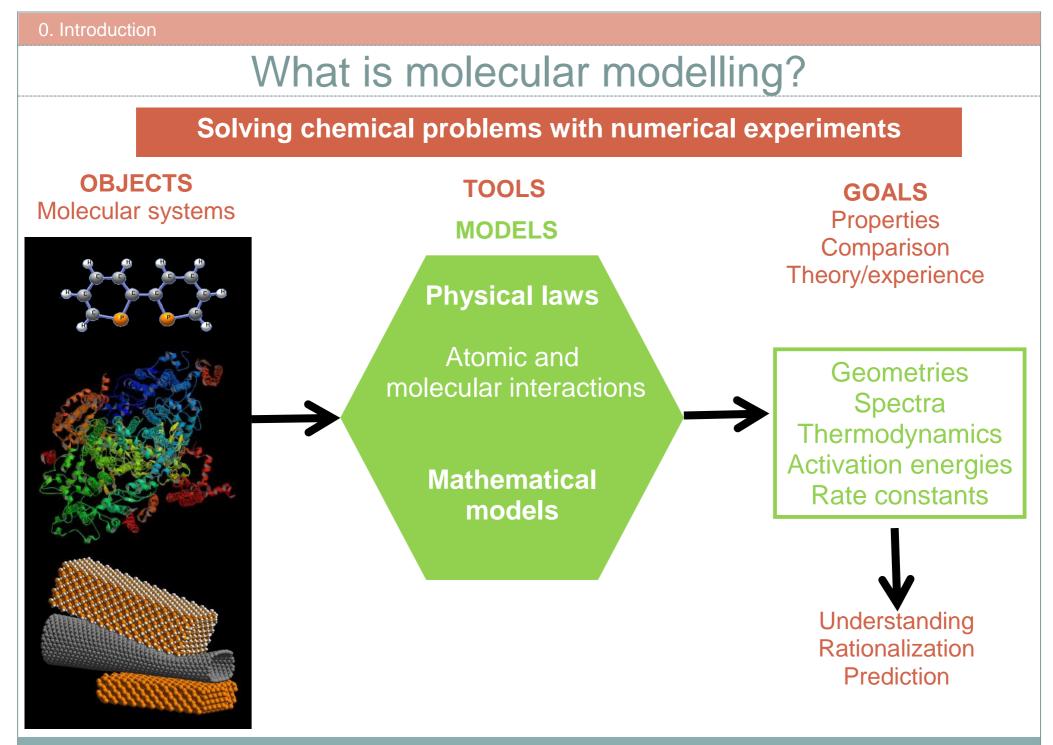
What is molecular modelling?

Wikipedia:

Molecular modeling encompasses all theoretical methods and computational techniques used to model or mimic the behaviour of molecules.

In other words:

Theoretical methods that allows to describe macroscopic observations with the use of microscopic description of matter

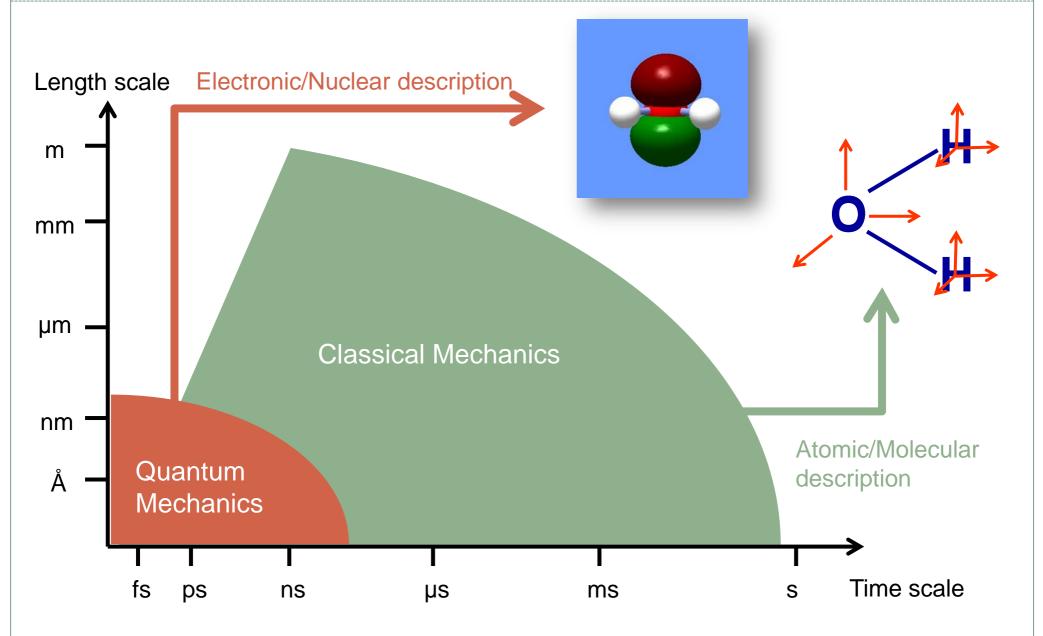


Outline

- I. Concepts in Molecular Simulations
- II. Molecular Dynamics simulations
- III. Monte Carlo simulations
- IV. Practical aspects of molecular simulations

Concepts in Molecular Simulations

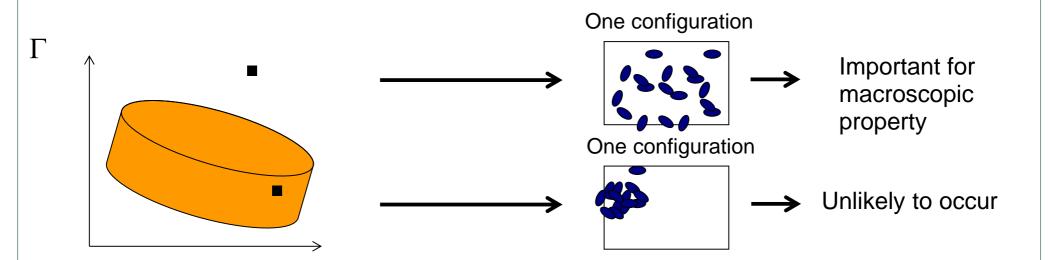
Molecular description and representation



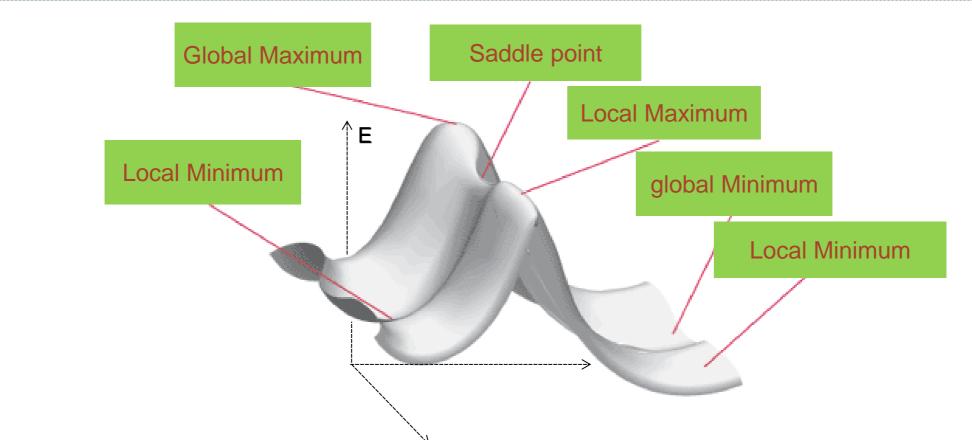
M2 SERP-Chem 2013-2014

The phase space

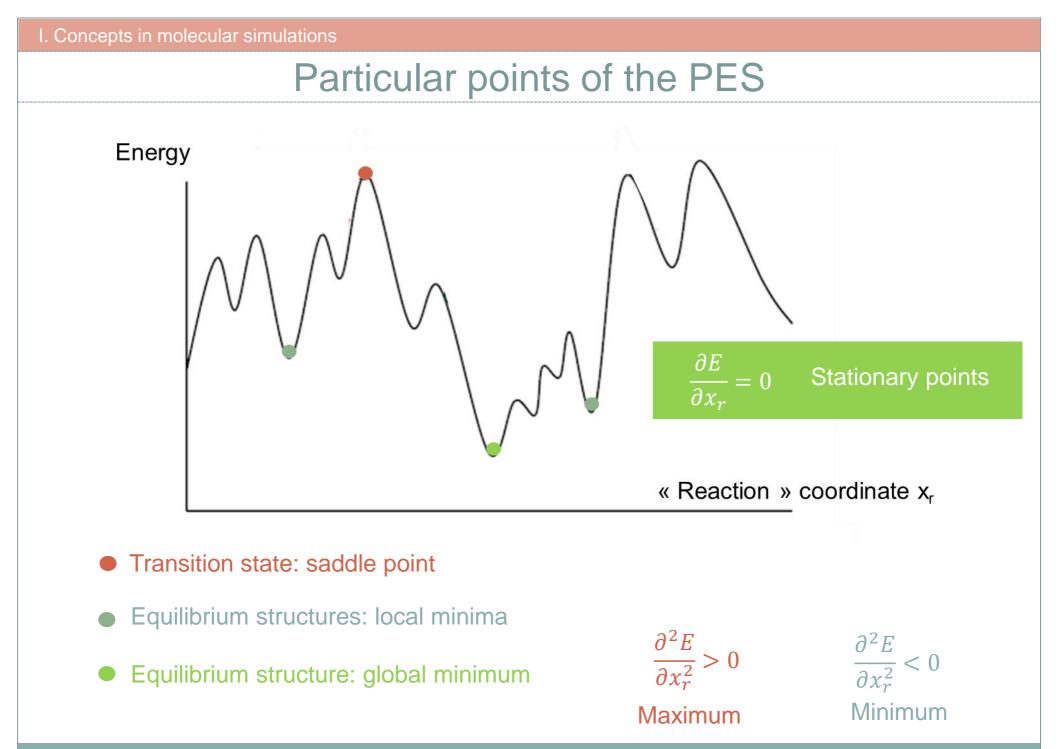
- One microstate = a set of given coordinates and moments (r_N,p_N) of all the particles of the system
- N particles → 6N-dimensional phase space Γ and 3N-dimensional configuration space
- All microstates do not have the same importance



The potential energy surface (PES)



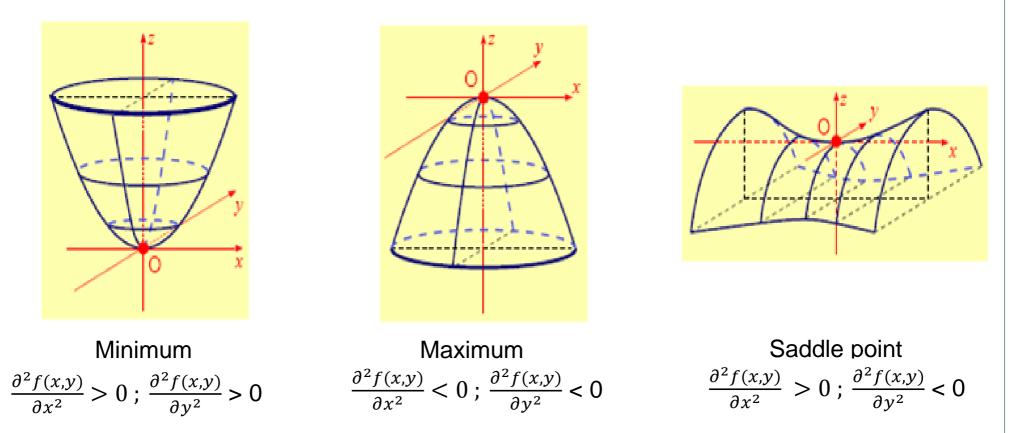
- Potential energy surface = energy as a function of nuclear coordinates (Born-Oppenheimer approximation)
- Each point of the configuration space corresponds to one point on the PES
- Various interesting points on the PES



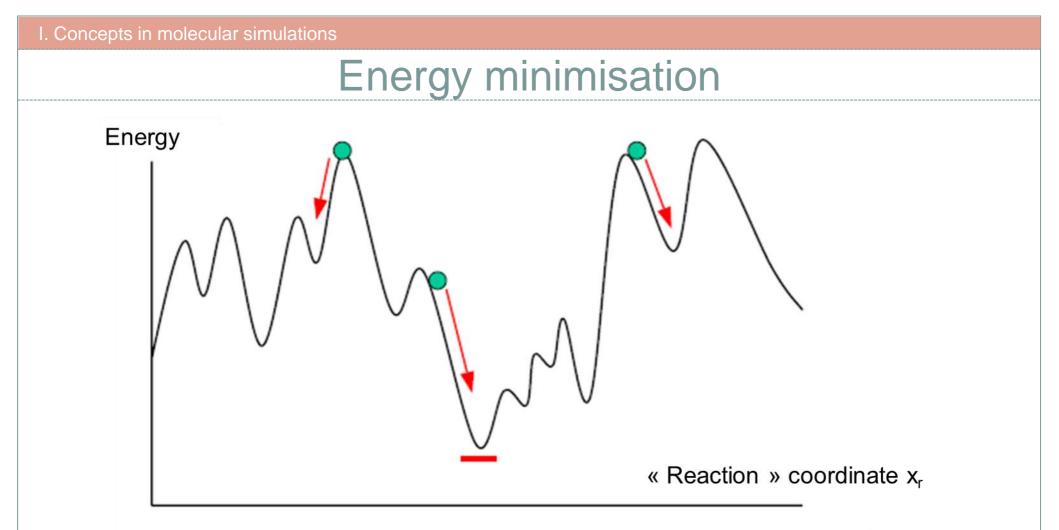
M2 SERP-Chem 2013-2014

Simulation Tools

The stationary points of the PES



- Stable states: minimum of the PES with respect to every coordinates
- Transition states: minimum in every normal direction but one, for which it is maximum
- Stationary points thus correspond to important states of the system



- In practice, high dimensional surface
- Many local minima
- How to perform energy minimisation?

Classification of minimisation algorithms

 Goal of minimisation algorithms: find the coordinates that correspond to the minimum value of the energy:

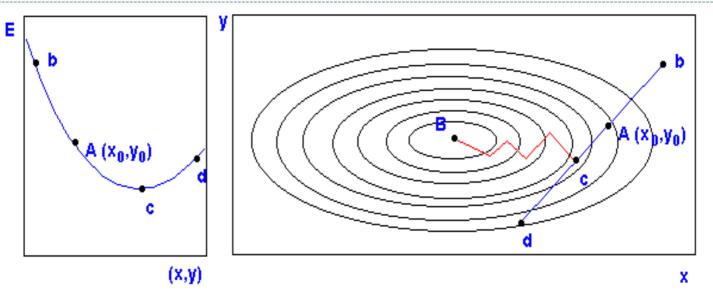
 $\forall i, \frac{\partial E}{\partial x_i} = 0 \text{ and } \frac{\partial^2 E}{\partial x_i^2} > 0$

 Analytical search is impossible because of the complexity of the energy function

Use of numerical methods

- Two groups of numerical methods:
 - Methods using the derivatives of E:
 - First-order
 - Second-order
 - Methods that do not use the derivatives

First-order derivative method: Steepest descent



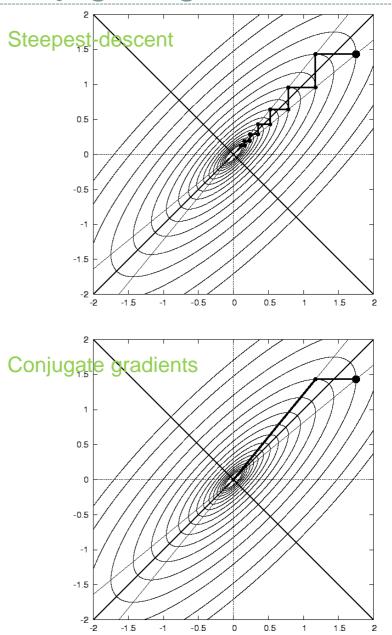
- The idea: the fastest decrease in energy at one point is seen along the gradient direction
- Algorithm steps:
 - The system is initialy in A and the gradient **g**_A of the energy is computed
 - The minimum along this gradient direction v_A = -g_A is searched. The system reaches the point c
 - The gradient of the energy at c is computed (it is found perpendicular to the previous gradient) and the process iterates until one reaches B

First-order derivative method: Conjugate-gradients

- Drawbacks of the steepest-descent algorithm:
 - « very local »
 - May lead to oscillatory processes in narrow valleys
- The oscillatory behavior comes from the fact that the direction v_i explored at step i is perpendicular to that v_{i-1} at step (i-1)
- Conjugate-gradients: keeping memory of the previous direction explored

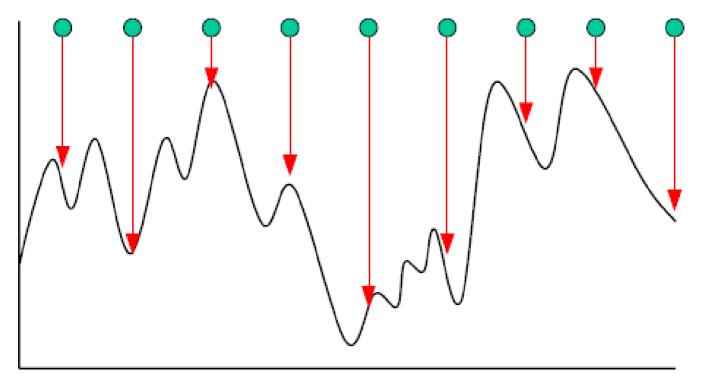
 $\boldsymbol{v}_i = \boldsymbol{-} \boldsymbol{g}_i + \boldsymbol{\gamma}_i \; \boldsymbol{v}_{i\text{--}1}$

 Conjugate-gradients reaches minimum of a M-dimension quadratic function in M steps



Drawbacks of energy minimisation

• Only the closest energy minimum is found



Energy minimisation from different configurations (generated by MD or MC simulations for example)

- Knowing minimum structures: is it enough?
 - Think of liquids and solids !!

How to compute macroscopic properties?

Intermolecular forces

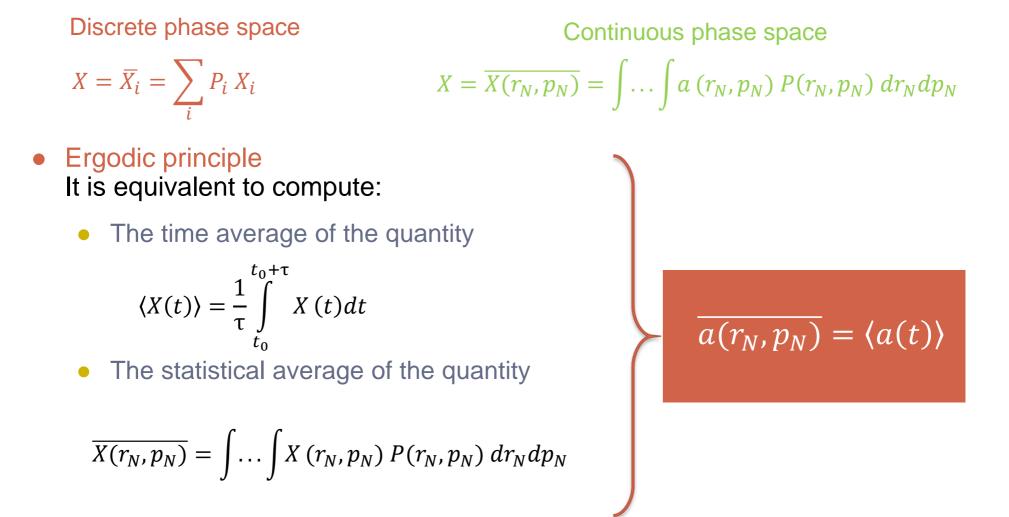
Statistical physics

Macroscopic properties

I. Concepts in molecular simulations

Principles of statistical physics

Ensemble averages
 Thermodynamic properties are averages of microscopic quantities over the accessible microscopic states of the system



Principles of statistical physics: ensembles

- Accessible microscopic states depend on the external parameters applied
- Statistical ensembles
 - (N,V,E): microcanonical ensemble isolated systems
 - (N,V,T): canonical ensemble equilibrium with a thermostat
 - (N,P,T): isothermal-isobaric ensemble equilibrium with a thermostat and a barostat
 - (μ,V,T): grand-canonical ensemble equilibrium with a thermostat and a molecular reservoir
- Probabilities P_i of microstates depend on the ensemble

Principles of statistical physics: partition function

- Canonical ensemble: (N,V,T)
 - Accessible microstates have the same volume and number of particles
 - **But** the energies E_i of the accessible microstates can vary.
- The probability of a microstate i depends on its energy:

 $P_i = \frac{\exp\left(\frac{-E_i(r_N, p_N)}{k_B T}\right)}{Q(N, V, T)}$

• The partition function: normalisation factor of the probability

$$Q(N,V,T) = \frac{1}{h^{3N}N!} \int \dots \int \exp\left(\frac{-E_i(r_N, p_N)}{k_B T}\right) dr_N dp_N$$

The partition function contains all the information necessary to compute average quantities

M2 SERP-Chem 2013-2014

Principles of statistical physics: partition function

 $E_i(r_N, p_N) = K_i(p_N) + U_i(r_N)$

Kinetic energy $K_i(p_N) = \sum_j \frac{p_j^2}{2m_j}$

Potential energy: molecular interactions Internal degrees of freedom

$$Q(N,V,T) = \begin{bmatrix} \frac{1}{h^{3N}N!} \int \exp\left(\frac{-K_i(p_N)}{k_BT}\right) dp_N \end{bmatrix} \times \begin{bmatrix} \int \exp\left(\frac{-U_i(r_N)}{k_BT}\right) dr_N \end{bmatrix}$$

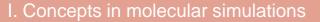
"Ideal" partition function Q_{id} Configurational partition function: Q_c

Ideal and configurational partition functions

- Ideal partition function
 - Easy to compute
 - Analytical expression:

$$Q_{id} = \prod_{j} \left(\frac{2\pi m_j k_B T}{h^2} \right)^{3/2} = \prod_{j} \frac{1}{\Lambda_j^3}$$

- Configurational partition function
 - Comes from intermolecular forces and internal degrees of freedom
 - Analytical expression available only for few models: hard spheres, van der Waals fluids
 - Need to be evaluated numerically



Numerical evaluation of Q_c

 Direct evaluation: Generation of all the possible configurations of the system

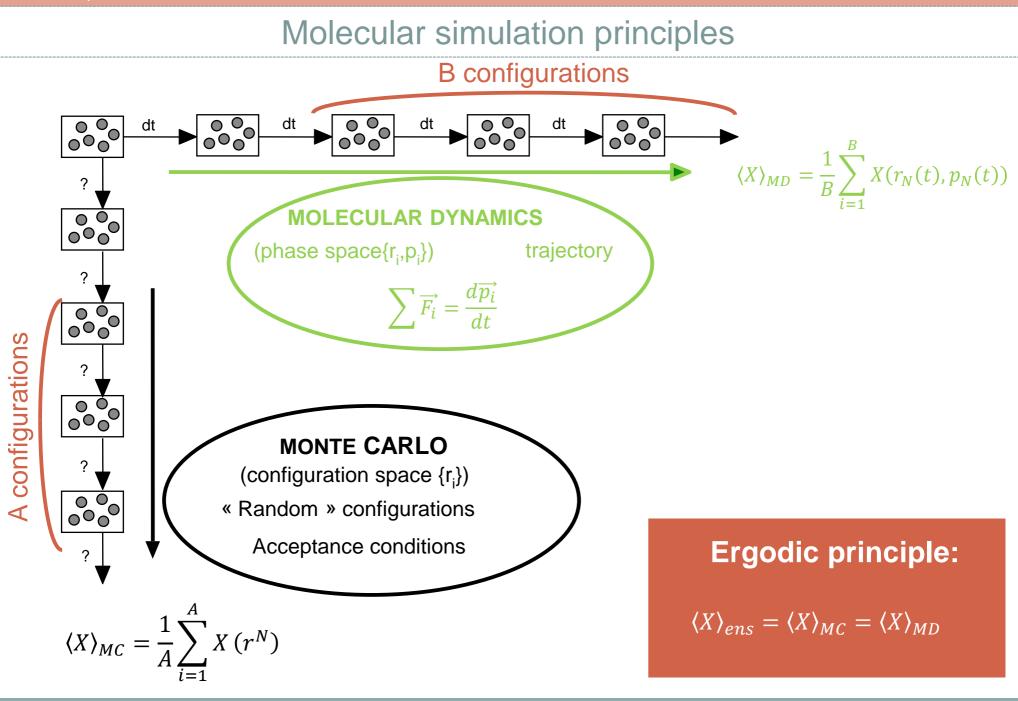
Impossible because of high dimensionality

Over all the possible configurations, only few have a non-negligible contribution to Q_c

Generation of **representative** configurations

Molecular simulation

I. Concepts in molecular simulations



M2 SERP-Chem 2013-2014

Simulation Tools

Brief history of molecular simulations

Around 1950 Use of the first computers for civil applications

- 1953 First simulation of a liquid by Monte Carlo (hard spheres) Métropolis, Rosenbluth et Teller
- 1956 Molecular dynamics Simulation of hard disks (Alder et Wainright)
- 1957 Monte Carlo Simulation of a Lennard-Jones liquid
- 1964 Molecular dynamics Simulation of condensed Argon (liquid) (Rahman)

From then and until now

Strong and continuous evolution of algorithms Simulation of complex mixtures, polar molecules, heterogenous sytems

Molecular dynamics simulations

Basics of molecular dynamics simulations

- Particles are submitted to inter-atomic potentials U
- Framework of classical mechanics: Newton's laws for the nuclei

$$\vec{F_i}(t) = m_i \vec{a_i}(t) = -\vec{\nabla_i} U(\vec{r}(t))$$

Expression of the potential U:

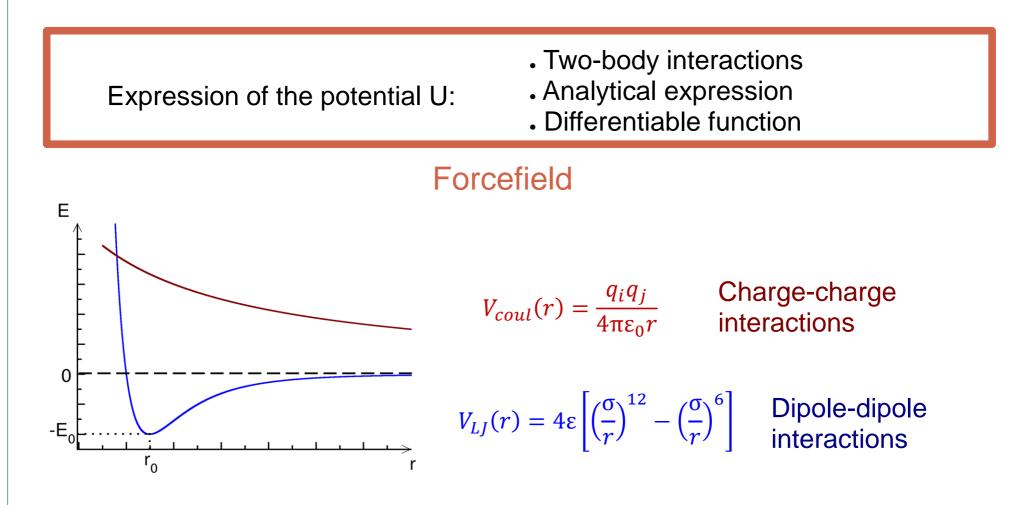
Quantum mechanics: Ab-initio MD Classical mechanics: (Classical) MD

Expression of U: forcefield

II. Molecular Dynamics simulations

Classical forcefields

$$\overrightarrow{F_i}(t) = m_i \overrightarrow{a_i}(t) = -\overrightarrow{\nabla_i} U(\overrightarrow{r}(t))$$

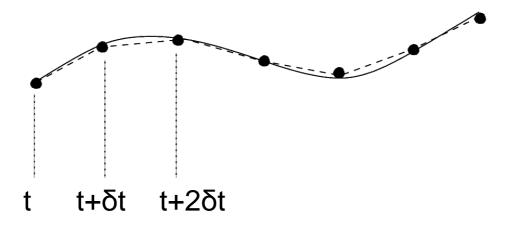


M2 SERP-Chem 2013-2014

Integration of the equations of motion

Finite difference methods:

Discretization of the trajectory and numerical integration



$$\vec{r}(t+\delta t) = \vec{r}(t) + \delta t \vec{v}(t) + \frac{1}{2} (\delta t)^2 \vec{a}(t) + \dots$$
$$\vec{v}(t+\delta t) = \vec{v}(t) + \delta t \vec{a}(t) + \dots$$

M2 SERP-Chem 2013-2014

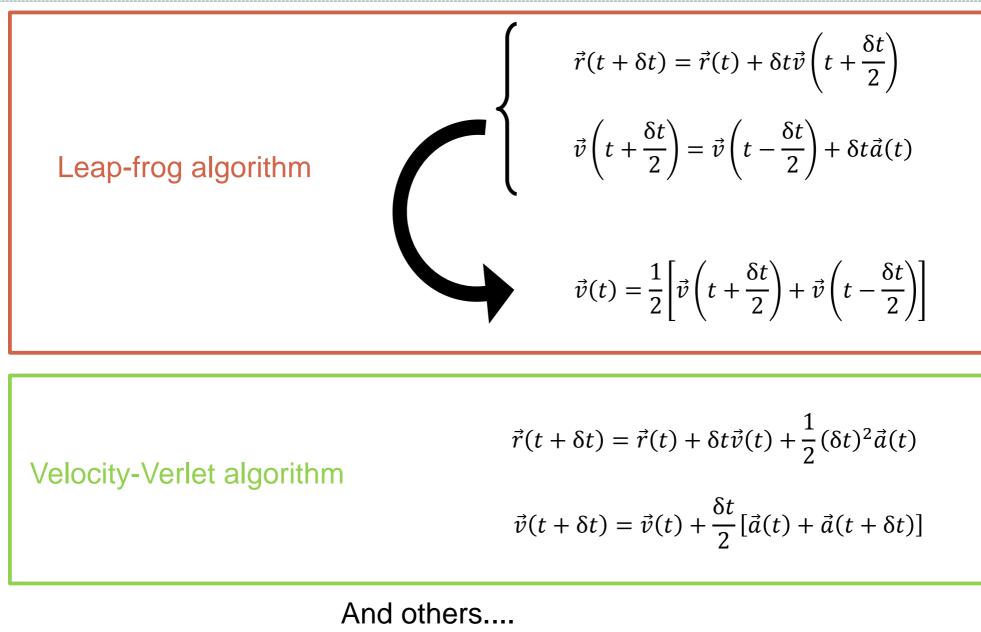
Equations of motion: the Verlet algorithm (1967)

$$\vec{r}(t + \delta t) = \vec{r}(t) + \delta t \vec{v}(t) + \frac{1}{2} (\delta t)^2 \vec{a}(t)$$
$$\vec{r}(t - \delta t) = \vec{r}(t) - \delta t \vec{v}(t) + \frac{1}{2} (\delta t)^2 \vec{a}(t)$$

 $\vec{a}(t) = -\vec{\nabla}U(t)$

$$\vec{r}(t+\delta t) = 2\vec{r}(t) - \vec{r}(t-\delta t) + (\delta t)^2 \vec{a}(t)$$
$$\vec{v}(t) = [\vec{r}(t+\delta t) - \vec{r}(t-\delta t)]/2 \,\delta t$$

Equation of motions: other algorithms



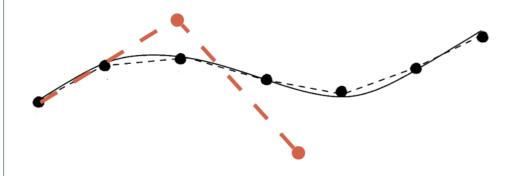
M2 SERP-Chem 2013-2014

Simulation Tools

II. Molecular Dynamics simulations

Integration in practice

- Which integration scheme should be used?
 - Good energy conservation
 - Depends on the time step value δt
- Choice of the time step
 - Small: good accuracy but computationally expensive
 - Big: poor accuracy for the trajectory but cheap



Compromise between accuracy and computation time

II. Molecular Dynamics simulations

More about the time step...

- Not too small but not too big, but how much?
- Typically one order of magnitude lower than the period of the fastest motion in the system

Caracteristic distance: $d \approx 0.3nm$

Caracteristic speed:

$$v \approx \sqrt{\frac{3k_BT}{m}} \approx 350m.\,s^{-1}$$

Caracteristic time: $\tau \approx \frac{d}{v} \approx 10^{-13}s$

➡ Time step δt ≈ 10⁻¹⁴ s

Example 2: water molecules

Fastest motion: vibration of O-H bond

Period of the vibration:

 $\nu\approx 4000 cm^{-1} \Rightarrow T\approx 10^{-14} s$

■ Time step δt ≈ 10⁻¹⁵ s

Statistical ensembles and molecular dynamics

All intermolecular forces are conservative

Total energy of the system constant: (N,V,E) microcanonical ensemble

T

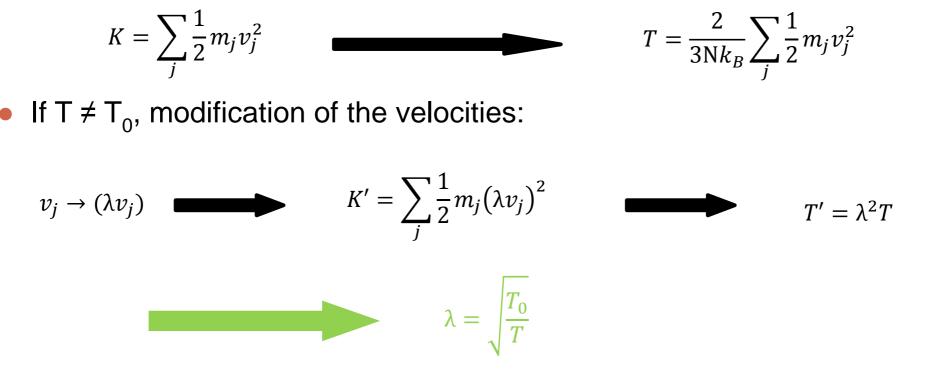
T is an output of the simulation:

$$=\frac{2\langle K\rangle}{3Nk_B}$$

Is it possible to fix T and to sample in the (N,V,T) or (N,P,T) ensemble ?

Constant temperature molecular thermodynamics

Fixing temperature to T₀ = Fixing kinetic energy



 In practice, this method is not used anymore and more sophisticated algorithm are used, but the idea of "modifying" the velocities of particles

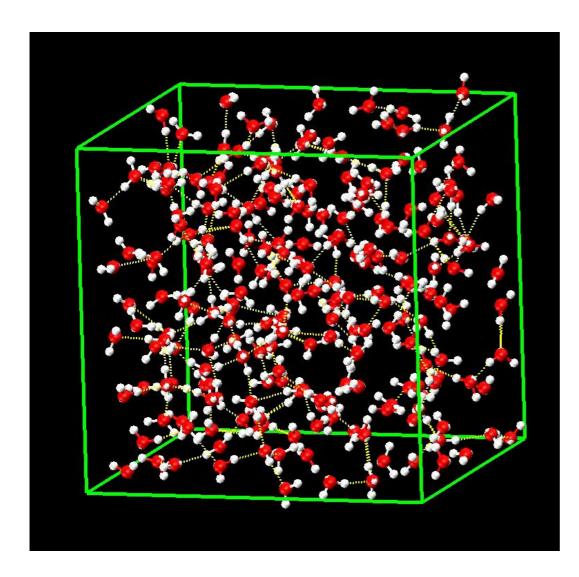
How to run an MD simulation?

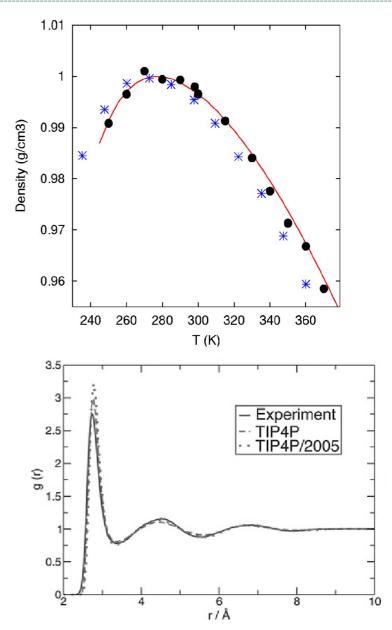
System definition

- Statistical ensemble
- Choice of the forcefield
- Temperature, density,...
- Setting up the initial "configuration"
 - Initial coordinates
 - Initial velocities (linked with temperature T)
- Calculation of forces applied to each particle
- Integration of the equations of motion

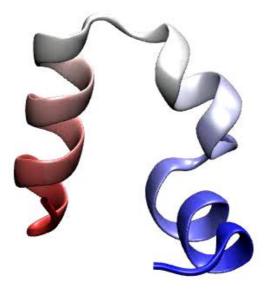
New coordinates and velocities

Few examples in motion: fluid simulation





Few examples in motion: protein folding simulation



0.0 ns

M2 SERP-Chem 2013-2014

Simulation Tools

Simulation Tools

• Drawback: many configurations have a negligible weight in the average

M should be very big

- Alternative: importance sampling
 - Generation of M' configurations that follow the Boltzmann probability distribution {P_i}
 - Direct calculation of the ensemble average:

Monte Carlo: the principles

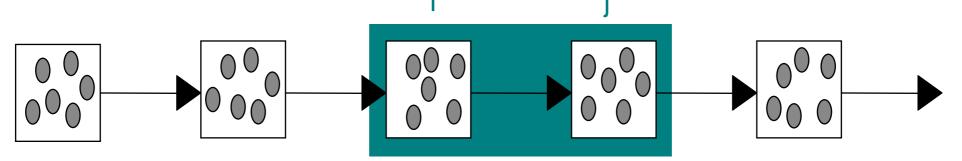
- Calculation of the ensemble average :
 - Random generation of M configurations i of the system
 - Calculation of the probability P_i of each configuration
 - Estimation of the ensemble average:

$$A = \sum_{i=1}^{M} P_i a_i$$

$$A = \frac{1}{M'} \sum_{i=1}^{M'} a_i$$

Monte Carlo: Markov chain and microreversibility

- How to generate configurations following the probability distribution {P_i}?
- Markov chain:
 - Creation of successive configurations
 - Random creation of each configuration
 - The probability W(i→j) to go from configuration i to the next configuration j only depends on i and j



• If i is the configuration at step t, the configuration at step (t+1) may then be:

- Either the same configuration i
- Or the new configuration j

Monte Carlo: Markov chain and microreversibility

• Probability to be in configuration i at step (t+1):

$$P(i, t + 1) = \begin{bmatrix} P(i, t) - \sum_{k \neq i} P(i, t) W(i \rightarrow k) \end{bmatrix} + \sum_{k \neq i} P(k, t) W(k \rightarrow i)$$

Probability to stay in
configuration i
Probability to arrive in
configuration i

 Equilibrium condition (stationnarity): At equilibrium, the probability to be in configuration i does not depend on the step, but only on its Boltzmann probability: P(i,t+1)=P(i,t)=P(i)

$$\sum_{k \neq i} P(i)W(i \rightarrow k) = \sum_{k \neq i} P(k)W(k \rightarrow i)$$

Probability of i in the statistical ensemble considered

Transition probability to go from configuration i to configuration k in the Markov chain

Sufficient condition: microreversibility

 $\forall (i,k), P(i)W(i \rightarrow k) = P(k)W(k \rightarrow i)$

Monte Carlo: Metropolis algorithm

- Aim of the algorithm: determine the transition probabilities so that configurations are visited with the right probability
- Transition probability $W(i \rightarrow k)$:

$$W(i \to k) = P_{gen}(i \to k).P_{acc}(i \to k)$$

• Micro-reversibility condition:

$$\forall (i,k), P(i)P_{gen}(i \to k)P_{acc}(i \to k) = P(k)P_{gen}(k \to i)P_{acc}(k \to i)$$

- Metropolis criteria:
 - Random generation of the configurations: $P_{gen}(i \rightarrow k) = P_{gen}(k \rightarrow i)$
 - Acceptation probability:

$$P_{acc}(i \to k) = 1 \quad if \quad P_k > P_i$$

$$P_{acc}(i \to k) = \frac{P_k}{P_i} \quad if \quad P_k < P_i$$

$$P_{acc}(i \to k) = \min\left(1, \frac{P_k}{P_i}\right)$$

The Metropolis algorithm in the canonical ensemble

• Probability of a configuration i:

$$P_i = \exp\left(-\frac{E_i}{k_B T}\right)$$

Acceptance probability

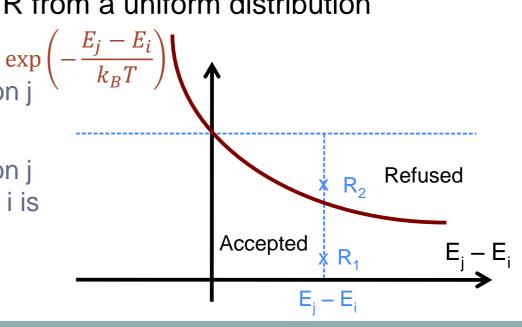
$$P_{acc}(i \to j) = \min\left(1, \exp\left(-\frac{E_j - E_i}{k_B T}\right)\right)$$

Monte Carlo: Metropolis algorithm in practice

- Calculation of the energy E_i of the current configuration i
- Construction of a new possible configuration j from configuration i
- Calculation of the energy E_i of the new configuration j
- Calculation of:

$$R(i \to j) = \exp\left(-\frac{E_j - E_i}{k_B T}\right)$$

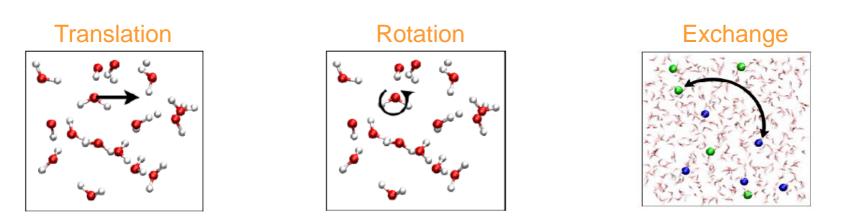
- Generation of a random number R from a uniform distribution between 0 and 1 $\left(\frac{E_j E_i}{E_j} \right)$
 - R < R(i→j): the new configuration j is accepted
 - R > R(i→j): the new configuration j is rejected and the configuration i is conserved



Simulation Tools

Creation of the new configuration

- If the configuration j is created randomly: few chances that R(i→j) will be high.
- Configuration j build from configuration i with "small" modifications (moves):



Moves can be « non-physical »

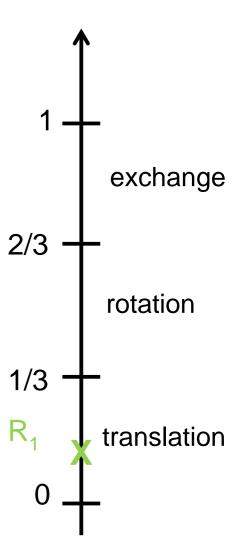
- Advantages:
 - Energy difference (E_i-E_i) easy to compute
 - Energy difference small \rightarrow "high" probability of accepting the move

Generating a new configuration in practice (1)

- Selection of a type of move:
 - Each type of move has a probability P(M) (sum to 1)
 - Generation of a random number R₁ between 0 and 1
 - Move M selected if:

$$\sum_{j=1}^{M-1} P(j) < R_1 < \sum_{j=1}^{M} P(j)$$

ranslation

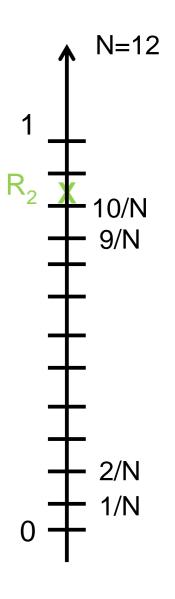


Generating a new configuration in practice (2)

- Selection of a type of move:
- Select a molecule to which the move is applied:
 - Generate a random number R₂ between 0 and 1
 - Chose molecule k so that:

7

$$\frac{k-1}{N} < R_2 < \frac{k}{N}$$
$$\mathbf{k} = 10$$



Generating a new configuration in practice (3)

- Selection of a type of move:
- Select a molecule to which the move is applied:
- Apply the selected move to molecule k:
 - Generate random numbers (3 for a translation: ξ_x , ξ_v , ξ_z)
 - Move the molecule to create the trial configuration j

 $x_k(j) = x_k(i) + (2\xi_x - 1)\delta r$

 $y_k(j) = y_k(i) + (2\xi_y - 1)\delta r$

$$z_k(j) = z_k(i) + (2\xi_z - 1)\delta r$$

Monte Carlo simulations and random numbers

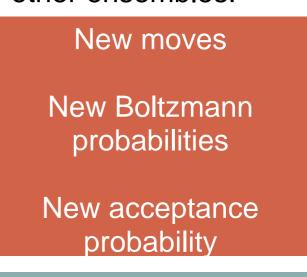
- Monte Carlo simulations make use of a large amount of random numbers
- Example: one trial configuration with a translation move
 - 1 number to "chose" the translation move
 - 1 number to "chose" the molecule to which the translation is applied
 - 3 random numbers to generate the amount of translation
 - 1 random number to determine the acceptance/rejection of the configuration
 - Total: 6 random numbers for only one trial move (10-1000 billions moves in one typical MC simulation)
- Need for "good" random number generators !

Monte Carlo simulations and statistical ensembles

- Monte Carlo simulations well suited for canonical ensembles:
 - Typical moves: translation, rotation
 - Biased moves for complex molecules (reptation, regrowth,...) to accelerate convergence
 - Acceptance probability: Metropolis criterion

$$P_{acc}(i \to j) = \min\left(1, \exp\left(\frac{E_i - E_j}{k_B T}\right)\right)$$

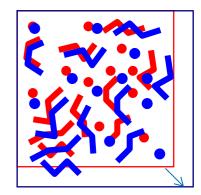
- But Monte Carlo algorithm can be adapted to other ensembles:
 - Isothermic-isobaric ensemble (N,P,T)
 - Grand-canonical ensemble (μ,V,T)
 - And others...



Monte Carlo simulations in (N,P,T) ensemble

- The volume of the system can fluctuate between two configurations
 - > New move: volume change
 - $V_j = V_i + (2\xi 1)\delta V$

Multiplication of every
 coordinate by a same factor



• Probability of one configuration:

$$P(i) \propto \frac{1}{N!} \left(\frac{V_i}{\Lambda}\right)^N \exp\left(\frac{-E_i + PV_i}{k_B T}\right)$$

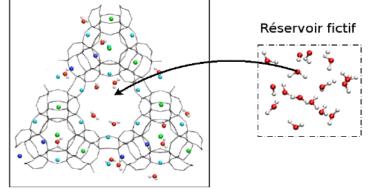
• Probability of accepting the new configuration:

$$P_{acc}(i \to j) = \min\left(1, \left(\frac{V_k}{V_i}\right)^N \exp\left(\frac{E_i - E_k}{k_B T} + \frac{P(V_k - V_i)}{k_B T}\right)\right)$$

Monte Carlo simulations in (µ,V,T) ensemble

- Grand-canonical ensemble adapted to open systems, where the number of particles N can fluctuate:
 - → Two new moves: insertion ($N_k = N_i + 1$) and deletion ($N_k = N_i - 1$) of particles
- Probability of one configuration:

$$P(i) \propto \frac{1}{N_i!} \left(\frac{V}{\Lambda}\right)^{N_i} \exp\left(\frac{-E_i - \mu N_i}{k_B T}\right)$$



• Probabilités d'accepter la nouvelle configuration :

$$N_{i} \longrightarrow \begin{cases} N_{k} = N_{i} + 1 \\ \text{insertion} \end{cases} P_{acc}(i \to k) = \min\left(1, \frac{V}{\Lambda^{3}(N_{i} + 1)}\exp\left(\frac{E_{i} - E_{k}}{k_{B}T} + \frac{\mu}{k_{B}T}\right)\right) \\ N_{k} = N_{i} \\ \text{rotation, translation, ...} P_{acc}(i \to k) = \min\left(1, \exp\left(\frac{E_{i} - E_{k}}{k_{B}T}\right)\right) \\ N_{k} = N_{i} - 1 \\ \text{deletion} \end{cases} P_{acc}(i \to k) = \min\left(1, \frac{N_{i}\Lambda^{3}}{V}\exp\left(\frac{E_{i} - E_{k}}{k_{B}T} - \frac{\mu}{k_{B}T}\right)\right)$$

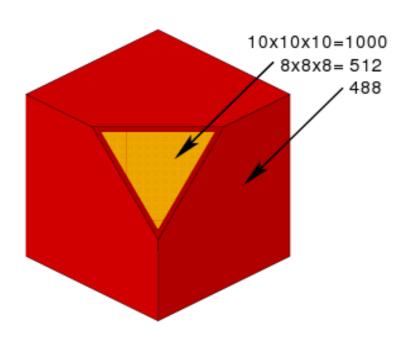
M2 SERP-Chem 2013-2014

Simulation Tools

Practical aspects of molecular simulations

Periodic boundary conditions

- Computational time for energy proportional to N²
 - Limitation of system size tipically to 10³-10⁶ atoms
 - Surface effect problems

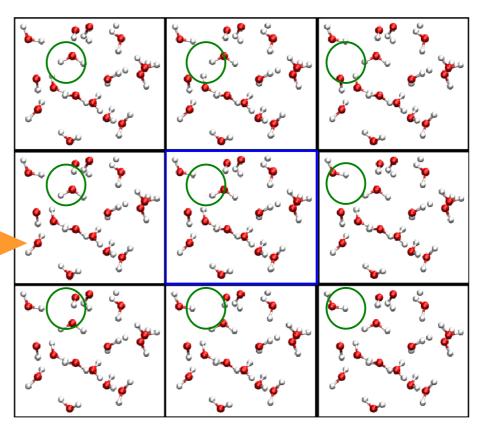


- Example: regular cubic network of 1000 atoms (10x10x10)
 - ~ 50% of the atoms on the surface !
- Even with 10⁶ atoms (100x100x100):
 - 98x98x98 = 941192 atoms « in the heart » of the system
 - ~6% of the atoms on the surface

Periodic boundary conditions

Periodic conditions:

Replication of the cell in every direction of space:



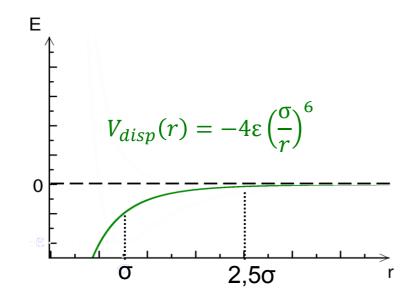
- Creation of a cristalline network:
 - Suppression of surface effects
 - Artefacts due to the artificial periodicity?

IV. Practical aspects of molecular simulations

Potential truncation and minimum image convention

- Intermolecular potentials: mathematical function in (1/r)ⁿ
- If n > 2, short-range interactions

Example: dispersion interactions

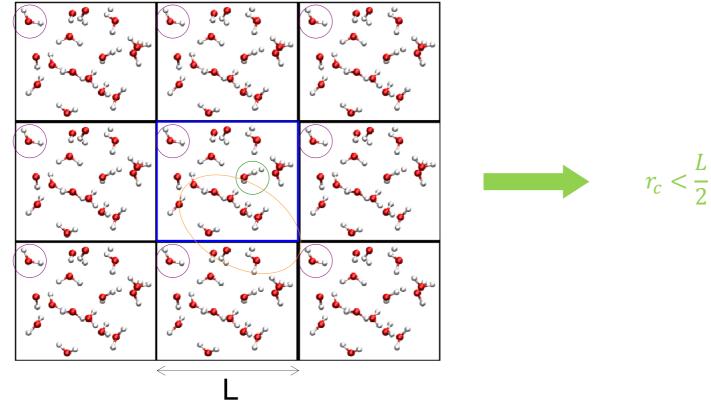


$$V_{disp}(\sigma) = -4\varepsilon$$
$$V_{disp}(2.5\sigma) = \frac{V_{disp}(\sigma)}{2.5^6} \approx 0.005 V_{disp}(\sigma)$$
$$\sigma : \text{few Å}$$

- Introduction of a cutoff radius r_c in the calculation of interactions
- Which value for r_c?

Potential truncation and minimum image convention

- Minimum image convention: One molecule should feel the influence of only one image of each molecule of the system (the closest one)
- Restriction on the value of r_c



• Lower the periodicity effects

Potential truncation in practice

- Chose the cutoff radius r_c
- Build a neighbour-list for each atom i that includes all the atoms lying at a distance less than r_c from i.
- Compute the interaction for atom i:
 - For each atom j in the neighbour-list:

$$V_{ij} = 4\varepsilon \left[\left(\frac{\sigma}{r_{ij}} \right)^{12} - \left(\frac{\sigma}{r_{ij}} \right)^6 \right]$$

For any other atom k:

$$V_{ik}=0$$

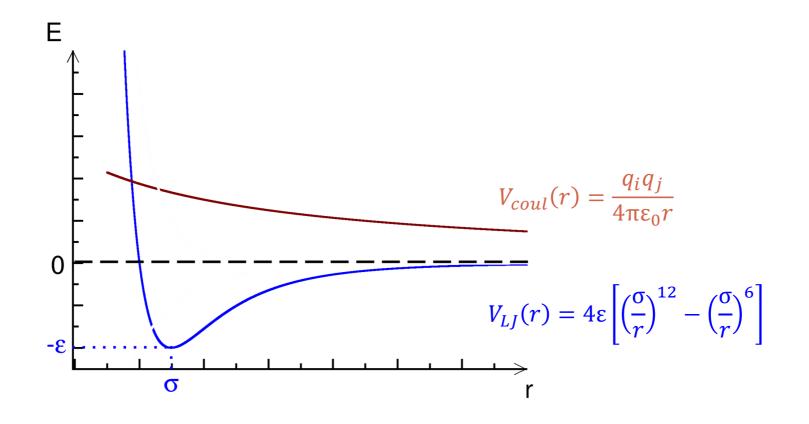
• Add a long-range correction:

$$V_{corr} = \rho \int_{r_c}^{\infty} V(r) 4\pi r^2 dr = 8\pi \rho \left[\frac{\sigma^{12}}{6r_c^9} - \frac{\sigma^6}{3r_c^3} \right]$$

The neighbour-list is rebuilt periodically

Long range forces

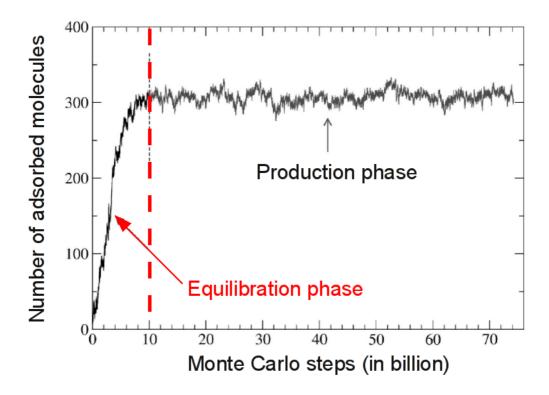
• Electrostatic interactions in (1/r) are long-range interactions



 Using a cutoff is inappropriate – more sophisticated methods are used (Ewald summations)

Equilibration and production phases

- Initial configuration is most of the time not at equilibrium
- The first stage of the simulation is to reach equilibrium: this is the equilibration stage.
- Once equilibrium is reached, the production phase can begin, during which properties can be calculated



Which information is accessible with MC or MD?

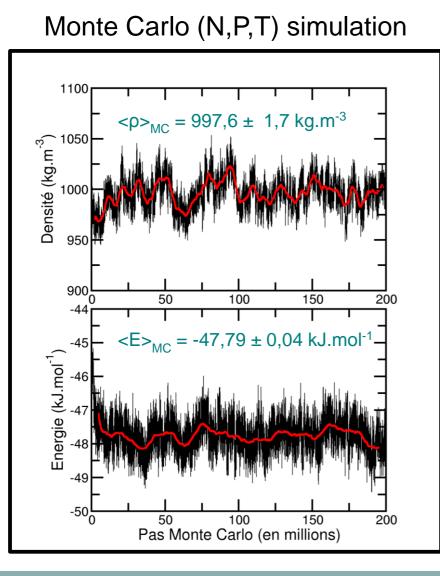
• Structural data

- Equilibrium structure of a macromolecule
- Fluid density in various (P,T) conditions
- Structure of a fluid (radial distribution function g(r))
- Energetic data
 - Binding affinities
 - Heat capacities
 - Thermoelastic coefficients (compressibility, Joule-Thomson coefficients)
- Transport properties
 - Diffusion coefficients
 - Viscosity
 - Thermal conductivity

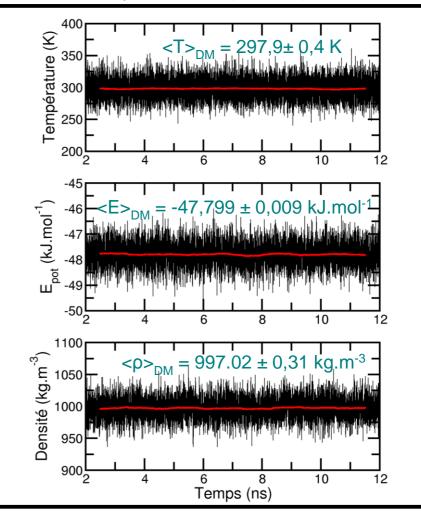
.... and many others

Monte Carlo or Molecular dynamics?

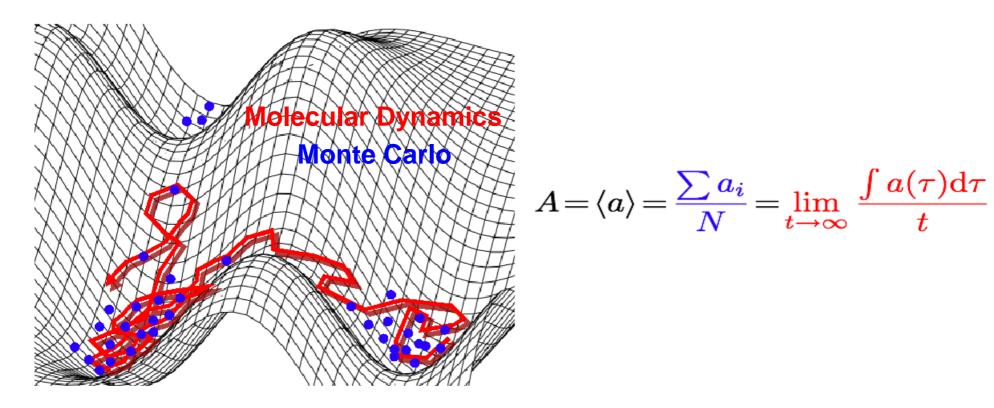
Water simulation at 298K and under a pressure of 1bar



Molecular Dynamics (N,P,T) simulation



Monte Carlo or Molecular dynamics?



- Molecular dynamics: temporal information, collective motions
- Monte Carlo: may be easier to overcome energy barriers, no need of thermostat or barostat ("exact" T or P)
- Hybrid MD/MC simulations are in development