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ABSTRACT

A theoretical study of delayed feedback in spin-torque nano-oscillators is presented. The macrospin geometry is considered, where self-
sustained oscillations are made possible by spin transfer torques associated with spin currents flowing perpendicular to the film plane. By
tuning the delay and amplification of the self-injected signal, we identify dynamical regimes in this system such as chaos, switching between
precession modes with complex transients, and oscillator death. Such delayed feedback schemes open up a field of exploration for such oscil-
lators, where the complex transient states might find important applications in information processing.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5095630

Spin-torque nano-oscillators (STNOs) are nanoscale electrical
oscillators based on ferromagnetic materials that are promising for a
number of technological applications, such as microwave sources and
field sensors.' * They are typically based on magnetoresistive stacks,
whereby spin-torques exerted by the flow of spin-polarized currents
result in self-sustained oscillation of magnetization in the free layer." ”
The oscillation state can comprise (quasi)uniform precession,”” spin
wave bullets,"’ coupled precession modes in synthetic antiferromag-
nets'"'? and ferrimagnets,"’ gyrating vortices'*'® and skyrmions,"”
and dynamical droplet solitons.”’

Delayed feedback in dynamical systems, whereby the output sig-
nal of a system is sent back into its input with amplification and delay,
can result in a variety of nonlinear behaviors.”' One possible outcome
involves inducing chaotic dynamics in otherwise low-dimensional sys-
tems. Delayed feedback extends the original phase space into a theoret-
ically infinite phase space, hence allowing for the observation of chaos
of possibly very large dimension. An example is the Mackey-Glass
oscillator,”* which is described by a first-order delay-differential equa-
tion and can exhibit a variety of dynamical states, including limit-cycle
and aperiodic states and complex transients. Nonlinear dynamics
from delayed feedback systems has since long been considered for
information processing, e.g., secure communications, sensing, lidar,
and even machine learning based computing.””**

For STNOs, whose dynamics is well-described by a two-
dimensional dynamical system,” it is intriguing to inquire whether

delayed feedback leads to more complex behavior such as chaos. In
magnetic systems, chaos has been observed in a variety of configura-
tions, such as in macrospin dynamics under periodic forcing,” the
dynamics of spin vortex pairs,”* during magnetization reversal,” and
in spatially nonuniform precession in spin valve devices.”” It has been
shown that delayed feedback can improve spectral properties such as
the emission linewidth.””>' Here, we present the results of a theoreti-
cal study on the complex transient response and chaotic behavior in
STNOs subject to delayed feedback. We considered a model oscillator
system in which the output is generated by changes in the magnetore-
sistance, which is subsequently fed back as variations in the input drive
current. We focus on the macrospin® oscillator operating near the
transition between the in-plane (IPP) and out-of-plane (OPP) preces-
sion regimes. By tuning the delay and amplification of the self-injected
signal, we identify dynamical regimes in this system such as chaos,
IPP/OPP switching with complex transients, and oscillator death.

The macrospin dynamics is described by the Landau-Lifshitz
equation with spin torques”

dm _ p
dt 1402

m X |:Heff +m X <aHeff *LP>}7 (1)
Ho

where 7, = 1,7 is the gyromagnetic constant, m is a unit vector repre-
senting the magnetization state, Hef is the effective field, o = 0.007 is
the Gilbert damping constant, J is the applied current density, and p is
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the orientation of the spin polarization. Note that ] is expressed as a
magnetic field by using the relation ] = /iPj/(eM;d), where a density
of j= 10" A/em® corresponds to a field of J = 11 mT, if we assume a
spin polarization of P=0.5, a saturation magnetization of M,=1
MA/m, and a film thickness of d=3nm, which are consistent with
typical spin valve nanopillar devices. In our calculations, we assume a
thin film geometry in which z is the direction perpendicular to the
film plane with uniaxial anisotropy and an applied field along the x-
axis. As such, Heg = (Hoy + Hanmy )X — Hym,z. In what follows, we
used yuyHo = 0.1 T, ugHan = 0.05 T, and pyHy = 1.7 T, which are
similar to values considered elsewhere.””* We take p = x which
defines the parallel configuration.

Some possible precession modes are illustrated in Figs. 1(a) and
1(b). The onset of self-sustained oscillations first involves precession of
the magnetization in the film plane (IPP),” where the trajectory has a
clamshell shape centered about the x-axis [Fig. 1(a)]. As J is increased,
the preferred oscillation mode involves out-of-plane precession (OPP),
where the axis of precession is the film normal and the orbits are more
circular [Fig. 1(b)]. There are two degenerate OPP states, i.e., preces-
sion about the +z and —z axes, which we denote as (OPP+) and
(OPP—), respectively. The current dependence of the mean values of
the three magnetization components and the oscillation period (of the
m, component) is presented in Fig. 1(c). We observe a clear current
threshold at J~ 0.007 T, below which the magnetization remains static
along x. Above this threshold in the IPP regime, the average (m,)
component (linked to magnetoresistance variations) decreases rapidly
as a function of current density, which is also accompanied by a sharp
decrease in the oscillation frequency. The average values are (m,)
= (m;) = 0 in this regime. Above a second threshold, /= 0.015 T, the
system enters the OPP state where all magnetization components have
nonzero time averages. The current dependence of (m,) exhibits the
opposite behavior compared with the IPP state, where it progressively
increases and is accompanied by an increase in the oscillation fre-
quency. The dashed lines in Fig. 1(c) indicate the degenerate OPP
state.

The output signal of a spin-torque nano-oscillator is typically
given by the giant or tunnel magnetoresistance, where the electrical
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FIG. 1. Oscillation modes of a macrospin spin-torque nano-oscillator under dc cur-
rents. (a) In-plane precession (IPP) under J=0.01 T. (b) Out-of-plane precession
(OPP) under J=0.02 T. (c) Mean values of the magnetization components and the
oscillation period as a function of applied current J. J, denotes the operating point.
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resistance depends on the relative orientation between m and p. It is
therefore natural to employ the output current (or voltage) variation
as the feedback signal. We assume a time-dependent applied current
density of the form

](t) :]0[1 +Ajmx(t_f)]7 (2)

where J, is the injected dc current, Aj is the relative feedback ampli-
tude, and 7 is the variable time delay. Since the reference layer polari-
zation is p = X, only variations in m, lead to changes in the overall
magnetoresistance, which is used as the basis for the feedback signal.

We focus on the feedback dynamics close to the IPP to OPP tran-
sition. A constant drive current of J,=0.015T is used, which leads to
IPP dynamics but is close to the threshold current for the OPP region.
Time delays over several orders of magnitude are considered, which
allows different time scales from single precession periods over to lon-
ger transients to be probed. Representative trajectories are shown in
Fig. 2. Because the dynamics of m(¢) is constrained to the unit sphere,
it is convenient to examine the trajectories in (¢, m,) space, where
¢ = tan"'(m,/my,). Besides the IPP and OPP states [Figs. 2(a) and
2(d), respectively], the delayed feedback can also lead to modulated
versions of these states, where distinct orbits for the IPP [Fig. 2(b)],
OPP [Fig. 2(e)], and mixed IPP/OPP [Fig. 2(g)] can be observed dur-
ing steady-state oscillation. These steady-state oscillations are charac-
terized by well-defined peaks in the power spectrum. As the time delay
is varied, chaotic states appear at positive and negative feedback [Figs.
2(c) and 2(f), respectively], which are characterized by broad features
in the power spectrum across a wide frequency range. We also find
evidence of transient chaos [Fig. 2(h)], where chaotic dynamics is
observed over a transient period of a few hundreds of ns before settling
into a modulated OPP trajectory. At long delays, we find cases of inter-
mittency which involve chaotic transitions between long periods of
IPP and OPP modes [Fig. 2(i)]. Oscillator death is also observed as
transient phases in this intermittent state, as we discuss in more detail
further below. Schematic illustrations of the power spectra are given as
insets above each phase portrait, which are computed from the m,
component over the last 100 ns of the simulation.

In Fig. 3, we present the full phase diagram of the oscillator
behavior as a function of the time delay = and feedback amplitude Aj
with four different representations. Each pixel represents the result of
time integrating Eq. (1) with Eq. (2) over 500 ns. The time-averaged
m, component is shown in Fig. 3(a). With the initial conditions used,
the OPP+ regimes are primarily visited and distinct bands in their
existence can be seen as the delay is varied. A measure of the total
oscillator power is given in Fig. 3(b), which is computed by integrating
over the power spectral density as shown in the insets of Fig. 2. Limit
cycles lead to low power, as indicated by the black regions, while cha-
otic dynamics give rise to high powers (orange to white regions). As a
complementary measure, we also examined the fractal dimension d of
the phase portraits’ in Fig. 2 using the box-counting method. Limit
cycles are represented by lines and have d = 1, while strongly modu-
lated and chaotic trajectories possess a fractal nature with noninteger
1 < d < 2. This analysis is presented in Fig. 3(c), where we can observe
distinct bands of steady-state oscillation, with a variety of fractal states
that dominate the dynamics at large delays. We note that the fractal
dimension does not appear to vary much with the delay at a given
value of the feedback amplitude. By combining these measures with
the behavior identified without feedback [Fig. 1(a)], we construct a
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FIG. 3. Phase diagram of possible dynamics as a function of the feedback ampli-
tude Aj and time delay . (a) Time averaged m, component, indicative of OPP. (b)
Averaged oscillator power using m, and m, components. (c) Dimensionality of tra-
jectories in (¢, my) space. (d) Classification of dynamical regimes identified, where
“mod.” denotes modulated states.

switching between the IPP and OPP modes takes place. This is shown
in Fig. 5, where m(t), my(t), and m,(t — 1) are illustrated over sev-
eral periods for 1 =0.5ns and Aj=—1. Mode switching almost
always occurs after a temporary synchronization between the output
and feedback signals, as indicated by the solid lines in the figure. The
second highlighted synchronization (dashed line) in Fig. 5 is not fol-
lowed by an OPP+ to OPP— or OPP to IPP transition, but rather an
extended dwell time in the OPP+ phase. As such, what appears to be
a mode transition from the OPP+ to either the IPP or OPP— state
turns out to be a transient dynamics that brings the system back into
the OPP+ state. It is therefore possible to have OPP+/OPP+ and
OPP—/OPP— transitions where a small transient phase occurs in
between these states. This results in a jitter in the precession period,

FIG. 2. Phase portraits of the oscillator dynamics under delayed feedback over ! ¢ S
500ns. For Aj=1.0: (a) IPP (z=0.1ns), (b) modulated IPP (=0.204ns), and ~ Which may also impede subsequent synchronizations to the feedback

(c) chaos (z=1ns). For Aj=—1.0: (d) OPP (x =0.135ns), (¢) modulated OPP signal.

(t=0.15ns), and (f) chaos (t =1ns). For Aj=1.7: (g) synchronized IPP-OPP
(t=0.0759ns), (h) transient chaos (t=0.174ns), and (i) intermittency
(z=13.18ns). The inset above each phase portrait shows the power spectrum of
the corresponding dynamics, where the horizontal scale represents a range of
50 GHz and the vertical scale represents the power spectral density on a log scale. (@) 1

phase diagram of possible states in Fig. 3(d). IPP states are primarily ”l H l ‘ H ‘ H “Hm H“Hm
seen at positive feedback, while OPP states appear for negative feed- S ||\ HH‘HHHM “ | ‘ “ “‘1 | l n |“ ’
back. This results from the operating point, where increases in J, drive \ . ’ l l‘ "l(‘ “ H ”l‘ ' ‘ ‘ .‘ ” “ (. '
the dynamics into the OPP regime, while decreases in the current J, l
further stabilize the IPP dynamics. Since (m,) < 0 at J, [Fig. 1(c)], 10

Aj> 0 leads to decreases in the average applied current, while Aj < 0 (b) ; ‘ ‘ ‘ , . ‘ ‘ ‘
leads to an increase in the average applied current. The modulated |
|

G | (1111 )

that variations in t are not sufficient to destroy the self-synchronized Au\
oscillatory modes.

When the time delay slightly exceeds the integer multiples of the [Il
precession period, signatures of chaotic dynamics appear. The dynam-

ics largely comprises intermittent switching between the IPP and t(ns) 10
degenerate OPP states, with no well-defined periodicity. An example
of the time dependence in this regime is shown in Fig. 4. In order to FIG. 4. Representative time traces of chaotic dynamics, where chaotic switching
gain a better understanding of this chaotic regime, we examine the between the IPP and OPP modes can be deduced from my(f). (a) Aj=1.0,
magnetization trajectories and feedback signals at points where t="1ns.(b) Aj=—1.0,t="1ns.
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FIG. 5. Comparison of the time traces of the output and feedback signals in the
chaotic regime. There is a synchronization between output [m,(f)] and feedback
[m(t — 7)] signals before every mode switching (straight line), but there are also
some synchronization events not followed by a mode switching (dashed line).

Since nonchaotic behavior implies a fixed phase difference
between the output and feedback signals (in the form of the delay),
and mode switching is triggered by the synchronization of these two
signals, it is interesting to examine how the phase difference between
these two signals vary with the time delay. This is presented in Fig. 6,
where the oscillator period, T, and the phase difference with the feed-
back signal are shown as a function of 7. Ty denotes the precession
period in the absence of chaos at Aj= —0.1. We note that other feed-
back strengths lead to similar behavior, and that certain aspects are
analogous to the response to an ac current at a fixed frequency.”® The
figure shows that the oscillator period exhibits large variations as a
function of the delay, where the period almost doubles at small delays
with deviations from the natural period decreasing with increasing
delay. The appearance of the chaotic regime is intimately related to the

chaos

—T —--tmodTp - 7mod T
0.2 T

Period (ns)
»
Phase difference

PR CT TS

0.25
T (ns)

FIG. 6. Average precession period, T, and the phase difference between the oscilla-
tor output and feedback signal, as a function of the time delay . Chaos arises
when the delay falls in a small interval exceeding the quantity = mod Ty, as indi-
cated by the filled bands.

ARTICLE scitation.org/journal/apl

phase difference between the feedback signal and the oscillator state.
Consider first what happens when the IPP and OPP modes are
attained. Here, the phase difference between the oscillator and feed-
back signals remains constant at a value t mod T, where T is close to
Tp. Values of 7 around a multiple of the natural period T, would there-
fore lead to a very small phase difference. However, Fig. 5 shows that
temporary synchronization leads either to mode switching or a jitter
in the period. For the former, the system does not attain a stable limit
cycle, while for the latter the jitter results in increases in the average
period until the stable limit cycle is reached. These two cases are illus-
trated in Fig. 6. For values of 7 just below a multiple of T (ie., small
negative phase differences), increases in the average period lead to sta-
ble oscillations, while for small positive phase differences a chaotic
regime is attained. This occurs because mode switching takes place
only at certain points along the trajectory, similarly to periodic core
reversal in nanocontact vortex oscillators,”” so chaotic dynamics can
only appear if the feedback signal produces such transitions at certain
points along the trajectories.

Intermittency, which represents chaotic switching between well-
defined IPP and OPP states, occurs for long time delays, t > T;. Such
delays are comparable to the typical relaxation time toward the steady
state orbit, i.e., the time required for initial transients associated with
stable precession states like IPP or OPP to die out. In this regime, the
oscillator settles into IPP or OPP states but switches intermittently
between the two as in the chaotic state. Two examples of time evolu-
tion are shown in Fig. 7. The time trace in Fig. 7(a) shows that the
feedback drives regular switching between the IPP and OPP states on
a time scale given by 7. After each switching event, the oscillator
relaxes toward a stable oscillatory state, but transients that reappear in
the feedback signal after a long delay cause the system to switch to the
other oscillation state. Similar transitions are also observed between
the IPP state and the static state where no oscillations are present,
which can be seen at around ¢~ 185 ns in Fig. 7(a) and more clearly in
Fig. 7(b) from around t~312ns. This is similar to the “oscillator

(@ 1

. | . 1 . | . .
100 120 140 160 180 200

1 s | L | L 1
320 340 360 380
t(ns)

FIG. 7. Representative time traces of intermittence, where the oscillator switches
between different oscillatory regimes with a period that is close to the delay . (a)
Aj=1.7,7=13.18ns. (b) Aj=2.0, t =30ns. A scale bar representing the delay
is indicated above each graph. Transient oscillator death can be seen starting at
around t~ 185ns in (a) and t~ 312 ns in (b).
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death” scenario in systems of coupled limit-cycle oscillators.”® This
behavior follows on from the different values of (m,) attainable in the
IPP phase [Fig. 1(c)], where a concurrence of (m,) < 0 with large Aj
> 0 results in a suppression of the IPP mode and stabilization in the
nonoscillatory state.

We have also conducted micromagnetic simulations to deter-
mine the extent to which the macrospin approximation holds for real-
istic devices. While the effects of delayed feedback are not studied in
these simulations, we can clearly identify regimes of in-plane preces-
sion and out-of-plane precession, whereby the magnetization trajec-
tory and time evolution are similar to that in the macrospin
approximation. However, we can also identify a regime at intermediate
current densities where chaotic transitions occur between approximate
IPP and OPP states. These are facilitated by spatially nonuniform
magnetization processes, which represent a clear deviation from the
macrospin approximation.

In summary, delayed feedback in a macrospin spin-torque nano-
oscillator can result in a variety of dynamical states, where transitions
between different oscillation modes can be triggered. Delayed feedback
may be a practical way for generating chaos and complex transient
states in such oscillators, which might be useful for tasks such as fast
random number generation,” "' chaos multiplexing for cryptogra-
phy,* and chaos-based computing.*’

See the supplementary material for (S1) details of the micromag-
netic simulations showing the limits of validity of the macrospin
approximation.
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