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Spin Waves on Spin Structures: Topology, 
Localization, and Nonreciprocity

8.1  Introduction

Spintronics exists because of an extra degree of freedom provided 
by electron spin that can be used for carrying information. 
Whereas information can be manipulated and transported using 
charge, this comes at a cost due to the concurrent and inherent 
generation of Joule heating. An alternative mechanism for 
transporting information through the spin variable is available 
and, in fact, has been studied for over 80 years. Spin waves and 
their particle-like counterpart, magnons, are the low-lying energy 
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states of spin systems and were first predicted by Bloch [4, 25, 
38, 43]. Not only do spin wave excitations exhibit a wide variety 
of linear and nonlinear properties (which makes them interesting 
for fundamental research), they also exist in the gigahertz to 
terahertz region of the frequency spectrum, which is appropriate 
for telecommunications and information technologies. New 
technologies that allow the fabrication of devices in the nanoscale 
together have led to the discovery of phenomena such as spin 
pumping [88], spin transfer torque [2, 80], and spin Hall effects 
[24, 42]. The field now called magnonics is concerned with 
consequences of the fact that the transport and processing of 
information can be achieved without physical charge transport.

Challenges addressed in this field pertain to issues related 
with spin wave dissipation, device miniaturization [82], 
and fabrication of artificial magnonic crystals [48–50]. Most 
recently, consequences of the Dzyaloshinskii–Moriya interaction 
(DMI) on spin wave properties has been studied extensively, 
especially in regards to interface-induced DMI. The DMI arises in 
low-symmetry materials with a strong spin-orbit coupling and 
is modeled as an antisymmetric form of the exchange interaction. 
Dzyaloshinskii first postulated this interaction in order to 
explain weak ferromagnetism in antiferromagnets [26]. A few 
years later Moriya calculated the second-order energy terms 
associated with spin-orbit couplings for the exchange interaction, 
thereby establishing a mechanism for the interaction [68, 69].

In noncentrosymmetric magnetic crystals the DMI is 
responsible for the spontaneous formation of helicoidal and 
skyrmionic structures [6, 7]. From the viewpoint of applications, 
the most exciting recent development has been experimental 
demonstration that an interface form of the DMI can appear 
because of inversion symmetry breaking at the surface between 
magnetic films on heavy metal nonmagnetic substrates that 
provide the spin-orbit coupling. Experiments have shown that 
this induced form of the DMI leads to chiral spin structures in 
manganese monolayers on top of tungsten [5] and skyrmion 
lattices in iron monolayers on iridium [37]. This interfacial 
DMI also exists for sputtered multilayer films such as Pt/Co/Ni 
[23], Pt/Co/AlOx [1], Pt/Co/Ir [66], Pt/Co/MgO [9], and 
(TaN, Hf, W)/CoFeB/MgO [81], which have strong perpendicular 
magnetic anisotropy. This form of DMI has helped explain 
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puzzling observations obtained for domain wall dynamics. 
The DMI stabilizes a Néel-type domain wall with a given 
handedness [15, 36, 86] with significant consequences on domain 
wall mobilities. The mobilities are now understood in terms of the 
interfacial DMI [87].

The interfacial DMI is of particular interest for magnonics. 
Udvardi and Szunyogh in 2009 suggested the possibility that the 
spin wave chiral degeneracy (resulting from the isotropic part 
of the exchange) could be lifted in the presence of the DMI [90]. 
From a first-principles calculation they found an asymmetric 
magnon dispersion for a Fe monolayer on tungsten for a certain 
direction of propagation that was explained by the presence  
the DMI. Shortly thereafter, Zakeri et al. demonstrated a DMI- 
driven asymmetry in the spin wave dispersion using spin-polarized 
electron energy loss spectroscopy on a Fe double layer grown on 
tungsten [100].

Theoretical studies suggested that DMI-induced nonreciprocity 
should exist [17, 18, 54, 65], and inelastic light scattering 
studies provided evidence for the nonreciprocal dispersion 
phenomenon and have been used to obtain measures of its strength 
[1, 23, 81, 83]. Localized spin wave modes have been studied 
for many years and are particularly important for thin-film 
geometries and inhomogeneous magnetic configurations. In 
particular, Winter calculated spin wave properties for propagation 
along a Bloch domain wall in the context of nuclear magnetic 
resonances in 1961 [98] and outlined the properties of a wall-
localized mode that appears in the modified spin wave dispersion. 
An unpinned wall supports a mode with zero energy for 
propagation perpendicular to the plane of the wall and a quadratic 
gapless dispersion for propagation parallel to the plane of the 
wall in which there is no spatial variation of the static 
magnetization.

We discuss in this chapter the propagation of spin waves 
along domain walls and the consequences of the DMI on their 
dispersion. We also discuss how the DMI affects the gap between the 
energies of freely propagating spin waves and the spin waves 
channeled along walls, as well as consequent nonreciprocities. 
These features provide the essential ingredients for a new type of 
application whereby domain walls are used to guide and control 
the flow of spin wave information.

Introduction
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In the second half of this review, we discuss a possibility 
for creating a mesoscopic metamaterial analogue of domain 
wall channeling. The idea in this case is very different and 
relies upon a new emerging technological concept sometimes 
referred to as artificial spin ice (ASI). Artificial magnetic spin ice 
is an arrangement of interacting nanomagnets with emergent 
collective magnetic properties. A straightforward and well-studied 
example is square ASI, wherein elements are arranged such 
that the dipolar interactions result in a type of antiferromagnetic 
alignment. The single-domain magnetic elements in these 
structures can spontaneously order into two sublattice arrays of 
alternating magnetic orientations on a two-dimensional square 
lattice. Relatively simple alterations of the array geometry can 
be made to produce other types of ordering or create frustration 
through competing interactions as occurs in spin glasses.

Static magnetic configurations in ASI can be manipulated 
through application of magnetic fields. We review how the 
magnetic configuration determines many details of the allowed 
microwave frequency excitation spectra. The individual 
ferromagnetic single-domain elements from which ASI is 
constructed have resonances in the microwave region. We 
discuss aspects of ongoing work aimed at using magnetic 
configurations in spin ice to manipulate microwave resonances. 
Ultimately it may be possible to employ ASI as reconfigurable 
magnonic crystals, a magnetic analogy to photonic crystals, 
where new and useful dynamic properties emerge by patterning 
magnetic thin films. We illustrate this idea using results from 
micromagnetic simulations for a type of configurable microwave 
resonator in a square ice geometry. The configurability arises 
from resonances associated a spin ice analogue to a microscopic 
domain wall.

8.2  Chiral Interactions and Spin Waves

As discussed in the introduction, the presence of the DMI leads 
to nonreciprocal propagation of spin waves. In this section, we 
discuss two specific consequences of this interaction, namely the 
appearance of an underlying drift current in certain geometries 
and focusing effects such as caustics.
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8.2.1  Nonreciprocity: Symmetry Breaking through the 
DMI

To understand how the nonreciprocal behavior comes about, it 
is useful to consider the magnetization dynamics in the micro-
magnetics approximation. Let m(x, t) be a unit vector that describes 
the magnetization in time and space. The basic equation of 
motion governing the dynamics is the Landau–Lifshitz–Gilbert 
equation,

	
0 eff

,= – × + ×
d d
dt dt

gm a
m m

m H m 	 (8.1)

where a is a dimensionless damping parameter, g is the 
gyromagnetic constant, and m0 is the permeability of free space. 
Heff (x, t) is the local effective field and is given by the variational 
derivative of the magnetic energy, U, with respect to the 
magnetization vector,
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where MS is the saturation magnetization. The energy contains 
contributions from the exchange interaction, dipole-dipole 
interaction, magnetocrystalline anisotropies, and the DMI.

The spin wave dispersion relation can be obtained by 
linearizing the equation of motion about the equilibrium magnetic 
configuration. Let m(x, t) = m0(x) + dm(x, t), where m0 represents 
the static equilibrium state and dm represents the fluctuations. 
This generates corresponding terms in the effective field, 
Heff = Heff,0 + dHeff. Neglecting the damping term, the linearized 
form of the dynamics is obtained by keeping terms that are linear 
in the fluctuations,

	 0 0 eff eff,0= – ( × + × ).
d

dt
d

dgm d
m

m H m H 	 (8.3)

For the interfacial form of the DMI, the largest nonreciprocities 
occur in the Damon–Eshbach (DE) geometry, which describes the 
configuration in which the magnetization lies in the film plane 
and where spin waves propagate in the film plane in a direction 

Chiral Interactions and Spin Waves
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perpendicular to the magnetization. For an ultrathin film of 
thickness d, the dispersion relation is given by [53]

	 || S( )= ( ) ( ) – 2 / ,xDk Mw w w gk k k 	 (8.4)

where

	 2
|| 0 ex 0 S( )= + ( )+ /2 ,xk M dk kw w w gmk 	 (8.5)

and

	 0 ex K 0 S( )= + ( )– – /2 .k M dk kw w w w gmk 	 (8.6)

Here, w0 = gm0H0 is the Zeeman term, where H0 is the applied 
field in the film plane along the y axis that saturates the 
magnetization in this direction. wex = 2gAk2/MS is the contribution 
from the exchange interaction, where A is the exchange constant. 
wK = gm0HK is the contribution from the effective perpendicular 
anisotropy, with 2K0/m0MS and K0 = Ku – m0MS

2/2 being the 
anisotropy field and constant, respectively. From Eq. 8.4, one can 
immediately deduce the nonreciprocal propagation introduced 
by the linear term in kx, where D is the strength of the DMI. Note 
that propagation is reciprocal along the y direction, parallel to the 
magnetization.

Another interesting consequence of the shifted dispersion 
relation can be seen in Fig. 8.1, where results of micromagnetics 
simulations of the transient response of the dynamical 
magnetization to a pulsed field excitation are shown. The open-
source code MuMax3 [93] was used to perform these simulations 
on a 40 μm × 40 μm × 1 nm thick film. A magnetic field 5% larger 
than the effective anisotropy field is applied to saturate the 
magnetization along the y direction. The simulations were used 
to compute the transient magnetization response to a 5 GHz 
sinusoidal field excitation applied for one period [53].

After the application of the field pulse, we observe a ripple 
structure that represents spin waves radiating outward from 
the excitation source, a common feature of wave phenomena 
like the water ripples observed after a pebble is thrown into a 
pond. An important feature for the DMI case is that the center 
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of the ripple is observed to drift along the –x direction as its size 
grows, which can be seen from the snapshots in Fig. 8.1a taken at 
different instants after the field pulse. In Fig. 8.1b, the 
displacement of this ripple is shown as a function of time after 
the application of the field pulse for different values of the DMI 
constant. The drift velocity of the ripple depends on D, where 
the lines indicate the expected displacement given by the drift 
part of the dispersion relation, that is, vdrift = дwdrift/дkx = wdrift/kx 
= –2gD/MS, which represents the component for which the phase 
and group velocities are identical. The simulated displacement 
of the ripple agrees very well with this equation, which indicates 
that the DMI leads to an underlying drift in the spin wave 
propagation in the DE geometry. This is consistent with the recent 
proposal that the DMI can be interpreted in terms of a Doppler 
shift by an intrinsic spin current [51].

Figure 8.1  DMI-induced drift of a spin wave ripple. (a) Time evolution 
of a spin wave ripple at three instants (2, 4, and 8 ns) after the 
application of a sinusoidal field pulse at the center of the image, with 
D = 1 mJ/m2. The image dimensions are 10 μm × 10 μm. Dx denotes the 
displacement of the ripple center. (b) Ripple displacement as a function 
of time for three different values of D. Symbols correspond to simulation 
data while solid lines are based on Eq. 8.4. Reprinted with 
permission from Kim et al. [53]. Copyright 2016 American Physical Society. 

Chiral Interactions and Spin Waves
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8.2.2  Caustics

The DMI-induced drift in spin waves has interesting consequences 
for power flow. With an interfacial DMI and for propagation in the 
DE geometry, the dispersion curve is approximately parabolic 
but with the minimum shifted away from the origin along the 
wavevector axis. Because of this, dw/dk is negative in some regions, 
and this indicates the group velocity is opposite to the phase 
velocity. However, this simple analysis is not sufficient to capture 
all the important features of the anisotropic power flow created 
by the DMI.

The study of focusing patterns for bulk [85] and surface 
phonons [13] in crystals is well known. The corresponding 
investigations in thick-film magnetic systems have begun only 
recently with both experimental [19, 22, 78, 79] and theoretical 
results [94]. The focusing results have already shown remarkable 
behaviors, including focusing effects of energy well below the 
expected diffraction limit and an interesting reflection behavior 
for energy where the angle of incidence is not equal to the 
angle of reflection. In many respects the magnetic system offers 
richer phenomena because the external magnetic field offers an 
opportunity to tune the dispersion relations and alter the focusing 
patterns, something that is not available in phonon focusing.

Let us discuss how this drift leads to focusing effects and 
caustics. In general, the far-field radiation pattern of waves excited 
by a point source can be predicted from the slowness surface, 
that is, a constant frequency curve in k-space. The radiation or 
focusing pattern can then be determined from the power flow, 
directed along the normal to the slowness surface, and with an 
amplitude that is inversely proportional to the square root of the 
curvature of the slowness surface [94]. Caustics appear at points 
along the slowness surface at which its curvature goes to zero, 
resulting in a divergence in the power flow.

To understand how caustics appear for spin waves in ultrathin 
films with an interfacial DMI, let us return to the dispersion 
relation in Eq. 8.4 from which the slowness surfaces can be 
computed. There are three main contributions to the spin wave 
energy that are wavevector dependent. First, the exchange term, 
wex  k2, gives a circular component to the slowness surface 
that results in a finite and positive curvature for all propagation 
directions in the film plane. As such, radiation of spin wave 
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power from an excitation point source is isotropic with only the 
exchange term. Second, the DMI results in simple displacement of 
the slowness surface in wavevector space but does not influence 
the curvature in any way. This results in the overall drift of 
excitation patterns, as discussed in the previous section. Third, 
the dipole-dipole interaction not only leads to elliptical precession 
(w|| ≠ w) but also anisotropic propagation in the film plane 
with respect to the magnetization orientation.

The combination of these three terms leads to nontrivial 
spin wave flow in ultrathin films. Some examples are shown in 
Fig. 8.2, where the slowness surface and focusing patterns are 
presented at five different frequencies for a 2-nm-thick film. In 
Fig. 8.2a, the slowness surface for each frequency is shown, where 
elements of the three interaction terms can be seen. The group 
velocity vectors are also indicated along each slowness surface. 
The expected focusing patterns are shown in Fig. 8.2b, computed 
from the curvature of the slowness surface in Fig. 8.2a. For the 
lowest frequency considered (4.2 GHz), a caustic can be seen 
for spin wave propagation in the –x direction, which is a consequence 
of the flattening on the left part of the slowness surface. As the 
frequency is increased to 5 and 6 GHz, a dent develops in the 
slowness surface, leading to two caustics propagating outward in 
the −x direction. The presence of the dent leads to the curvature 
vanishing at two points along the slowness surface, resulting 
in the two focused beams predicted. As the frequency is further 
increased, the dent vanishes and a single caustic is recovered 
at 6.5 GHz. For higher frequencies, the exchange terms become 
dominant in the dispersion relation and the slowness surfaces 
recover a more circular shape, resulting in smaller focusing effects, 
as seen for 7.0 GHz.

The predicted focusing patterns can be compared with 
results from micromagnetics simulations, with which the spin 
wave power flow from a point source excitation can be computed. 
The same geometry as for Fig. 8.1 is considered, but instead the 
response to a continuous sinusoidal point source field excitation 
is computed. In Fig. 8.2c, the spin wave power is presented for five 
difference excitation frequencies, which is computed by averaging 
the z component of the dynamic magnetization, dmz(x, t)2, 
following the application of the field excitation. The excitation 
frequencies used in the simulations were chosen to match as 
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closely as possible the focusing patterns predicted from the 
dispersion relation (Fig. 8.2b). While the agreement in the 
frequencies is only semiquantitative, the simulations reproduce 
well the different focusing patterns predicted, namely the 
orientation and trends in the different caustics as the excitation 
frequency is increased. The discrepancy is likely due to the 
local approximation used for the dipolar interaction in Eq. 8.4. 
Nevertheless, relatively good agreement between the simple 
analytical theory and full micromagnetics can be achieved.

Figure 8.2 Spin wave power flow and caustics. (a) Slowness surfaces 
for different frequencies determined from Eq. 8.4. vg denotes the group 
velocity vector. (b) Predicted focusing patterns based on the slowness 
surfaces in (a). (c) Simulated focusing patterns due to a sinusoidal 
point source excitation at different frequencies. Each image represents 
an area of 20 μm × 20 μm, and the point source is located at the center. 
The frequencies are chosen to match the focusing patterns in (b). 
Reprinted with permission from Kim et al. [53]. Copyright 2016 
American Physical Society. 
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Figure 8.3 Interference patterns. (a) Slowness surfaces for two 
frequencies determined from Eq. 8.4. vg denotes the group velocity vector. 
(b) Wavevector k as a function of the direction of vg for the slowness 
surfaces in (a). The shaded regions denote propagation directions for 
which several k are possible. In the top inset, a schematic real space 
representation of propagation directions along which interference 
is expected, where the numbers indicate the number of allowed k. 
(c) Simulated interference patterns due to a point source excitation at 
different frequencies. Each image represents an area of 5 μm × 5 μm, 
with the point source located at the center. The frequencies are chosen 
to match the interference patterns expected from (b). Reprinted with 
permission from Kim et al. [53]. Copyright 2016 American Physical Society. 

Another remarkable feature of Eq. 8.4 is the possibility of 
generating interference patterns from a single point source. 
Some evidence of interference can already by seen in Fig. 8.2c 
for the excitation frequencies of 4.7 and 5.2 GHz in the region 
bounded by the two focused beams. To illustrate how such effects 
arise, we consider an example in which the dent in the slowness 
surface evolves into two distinct surfaces between 5.7 and 5.8 GHz, 
as shown in Fig. 8.3a.

Consider first the response to the excitation at 5.7 GHz, which 
results in a C-shaped slowness surface. If we examine how the 

Chiral Interactions and Spin Waves



230 Spin Waves on Spin Structures

group velocity vector, vg, evolves around this surface, we notice 
that certain orientations of vg appear at multiple points along this 
surface, which indicates that propagation along these directions 
can involve partial waves with different wavevectors. To see this 
more clearly, we plot in Fig. 8.3b the magnitude of the wavevector 
k as a function of the angle of vg with respect to the kx axis (in 
the film plane), vg ,f, for the two excitation frequencies considered. 
For 5.7 GHz, a range of propagation angles can be identified in 
which three values of the wavevector k are allowed, while only a 
single k is allowed outside this range. This is illustrated 
schematically above the graph in Fig. 8.3b, which suggests that 
three-wave interference should only be seen for propagation near 
the –x direction, while no interference is expected for propagation 
along +x. This picture is verified in micromagnetics simulations 
at a similar excitation frequency of 5.56 GHz, where interference 
is mostly localized to the x < 0 region.

On this basis, the existence of two slowness surfaces for 
5.8 GHz (Fig. 8.3a) should result in interference for all propagation 
directions. By following a similar analysis, four-wave interference 
is expected within a narrow range of propagation angles about 
the –x direction, while two-wave interference for all other 
directions (Fig. 8.3b). This feature is confirmed in simulation at 
an excitation frequency of 5.66 GHz, where one can distinguish 
two different interference patterns with the expected angular 
dependence.

Such caustic beams and interference patterns, induced by an 
interfacial DMI, could be useful for magnon-based computation 
and memory [49, 50, 59] and for exploring magnetic analogs of 
wave phenomena seen in other physical systems such as vortices in 
electron optics [73]. 

8.3  Localization and Reconfigurability

In this section, we discuss spin wave localization and channeling 
effects due to spin textures, such as magnetic domain walls 
and tilted-edge magnetization states in nanostructured films 
and in ASI. These localized excitations can potentially allow 
spin waves to be guided efficiency in thin films without any 
lithography and provide schemes for reconfigurable magnonic 
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circuits by virtue of using different domain structures and 
magnetization states.

8.3.1  Domain Wall Channeling

The basic principle of the domain wall magnonic waveguide is 
illustrated in Fig. 8.4 for a thin rectangular ferromagnetic wire 
with dimensions of 1000 nm × 250 nm × 1 nm and a perpendicular 
magnetic anisotropy along the z axis. A domain wall separates 
two uniformly magnetized up and down states with the wall 
axis along y, which is perpendicular to the wire axis x. The spin 
waves considered are associated with localized domain wall 
eigenmodes that propagate along the x direction, parallel to the 
domain wall. In the following, we discuss results of micromagnetics 
simulations in which these modes are driven by a local excitation 
field hrf.

With the isotropic exchange interaction, uniaxial anisotropy, 
and dipole-dipole interactions, the Bloch-type domain wall 
minimizes the volume dipolar interaction and it is characterized 
by moments that rotate in a plane (xz) perpendicular to the wall 
direction (y). For this wall type, there exists a family of spin wave 
eigenmodes, known as Winter modes, that are localized in the 
direction perpendicular to the domain wall (y) on a length scale 
l but propagate as plane waves parallel to the domain wall (x) 
[98]. Here 0= /A Kl  is the characteristic wall width parameter. 
A particular feature of these modes is that they are gapless, in 
contrast to the bulk spin wave modes that are quadratic in 
wavevector with a gap at zero wavevector defined by the 
perpendicular anisotropy energy (Fig. 8.4b). For a microwave 
field excitation in the frequency gap of the bulk modes, only 
the localized Winter modes are excited and are effectively 
channeled along the domain wall center (Fig. 8.4c; excitation at 
10 GHz), which acts as a local potential well for the spin waves. 
The wavelength at 10 GHz is approximately 60 nm, which 
means there is subwavelength confinement in both the film 
thickness (1 nm) and across the width of the domain wall (~18 nm); 
such localized modes therefore represent true one-dimensional 
propagation of spin waves. When the microwave field is applied 
in the frequency band of the bulk modes, the channeling is 
preserved whereby the localized modes can be seen to propagate 

Localization and Reconfigurability
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with a higher wavevector than the bulk modes (Fig. 8.4c; 
excitation at 50 GHz).
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Figure 8.4  Spin wave channeling in domain walls (DWs). (a) Geometry 
for channeling along the center of the wall, where a radio-frequency 
antenna generating an alternating field, hrf, excites spin waves that 
propagate along the x direction. (b, d) Dispersion relation for channeled 
Bloch (b) and Néel (d) domain wall spin wave modes in comparison 
with bulk spin waves. For the Néel wall case, D = 1.5 mJ/m2. (c, e) Simulation 
results of propagating modes for excitation field frequencies in the 
bulk (50 GHz) and in the gap (10 GHz) for Bloch (c) and Néel (e) 
walls. These driving frequencies are shown as dashed lines in (b, d). 
Reprinted with permission from Garcia-Sanchez et al. [28]. Copyright 
2015 American Physical Society.

Above a critical value of the DMI [36, 87], Néel domain 
walls are favored energetically over Bloch walls. For example, 
left-handed Néel walls are favored at equilibrium in the asymmetric 
Pt/Co/AlOx multilayer [86], which possesses a strong interfacial 
DMI [1]. The moments in this wall type rotate in a plane (yz) 
parallel to the wall direction (y), which leads to an increase in the 
volume dipolar interaction but which is subsequently compensated 
by the DMI above a critical value [87]. In this case, the inclusion 
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of the DMI leads to a hybridization of the Winter modes and 
it is possible to obtain an expression for the channeled mode 
frequencies from perturbation theory by using the Winter modes 
as a scattering basis [8]. In addition to an ellipticity in the 
precession, the DMI results in a linear wavevector dependence 
for the mode frequency, as seen for the case discussed before for 
propagation in the DE geometry in continuous films. However, 
this linear dependence does not lead to a simple shift in the 
quadratic dispersion relation as a result of the ellipticity. Instead, 
the dispersion relation becomes markedly asymmetric with 
respect to kx (Fig. 8.4d), where a quasi-linear variation is seen for 
kx > 0, while a strongly quadratic variation is preserved for kx < 0. 
This asymmetry leads to pronounced differences in the left- and 
right-propagating wavevectors, which can be seen for microwave 
field excitations in the frequency gap and in the frequency band 
of the bulk spin wave modes (Fig. 8.4e). The channeling properties 
of the Néel-type wall are preserved, even in cases where the 
localized and propagating mode frequencies are closely spaced, 
which can be seen for the kx propagation at around 50 GHz in 
Fig. 8.4e. It is interesting to note that the energies of the 
channeled and bulk mode become degenerate for a certain value 
of kx for finite D. This value of kx represents an inversion of the 
gap separating the localized from the bulk states.

Because of the strong localization of Winter modes, domain 
walls can act as effective conduits for spin waves even in curved 
geometries. An example is shown in Fig. 8.5, where results of 
micromagnetics simulations are presented for channeled wall 
modes for different excitation frequencies. In the simulations, 
the spin waves are excited by a microwave antenna located at 
one end of the domain wall and their propagation along a curved 
wall structure, with a radius of curvature of 89 nm, is computed. 
For wavelengths shorter than and comparable to the radius 
of curvature 40 ≤ l ≥ 120 nm, transmission of the spin waves 
around the corner is observed to be possible with minimal 
scattering. For l = 120 nm, one can observe a slight phase shift 
at the corner where the node of the wave profile is slightly 
stretched at the bend. For l = 140 nm, some transmission is 
observed but with amplitudes greatly reduced in comparison 
to the incident wave. For l ≥ 160 nm, no perceptible transmission 
of the spin waves around the corner is seen. These results 
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suggest that the curved waveguide structure proposed can allow 
full transmission of spin waves as long as the wavelengths 
involved are comparable to or smaller than the radius of 
curvature of any corners encountered. Challenges for applications 
would therefore involve designing suitably curved conduits, for 
example, through domain wall pinning and engineering material 
properties to obtain narrow or wide domain walls.

Figure 8.5 Spin wave channeling along curved domain walls. (a) Geometry 
of the curved domain wall used in simulation, where a radio-frequency 
antenna generating an alternating field, hrf, excites spin waves that 
propagate along the wall. (b) Snapshots of channeled spin wave modes 
at different wavelengths with the corresponding excitation frequencies. 
rd denotes the radius of curvature of the domain wall channel. 
Reprinted with permission from Garcia-Sanchez et al. [28]. Copyright 2015 
American Physical Society.

Domain walls also allow for the prospect of constructing 
magnonic circuits that do not require lithography [28, 55, 95]. In 
Fig. 8.6, an example is shown of how stripe domains can be used 
as multiple channels through which spin waves can be propagated 
without interference. In this example, the domain structure was 
calculated from micromagnetics simulations of a 1-nm-thick film 
with lateral dimensions of 1 µm × 1 µm by allowing a stripe domain 
pattern to relax with different pinning conditions along the left 
and right edges of the system. For the Bloch walls considered, an 
excitation in the frequency gap (10 GHz) results in channeled modes 
that propagate along the domain wall conduits with no perceptible 
cross-talk between the channels, as shown in Fig. 8.6b.
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Figure 8.6 Example of spin wave channeling in a multidomain structure 
with Bloch domain walls. (a) Magnetization configuration of the domain 
structure in a 1-nm-thick 1 µm × 1 µm film with a microwave antenna 
along the middle of film. (b) Spin wave channeling along the domain walls 
for an excitation frequency of 10 GHz, which lies in the frequency gap 
of the bulk spin wave modes (cf. Fig. 8.4). Reprinted with permission 
from Garcia-Sanchez et al. [28]. Copyright 2015 American Physical Society.

This scheme opens up a number of interesting possibilities 
for reconfigurable magnonic circuits. For example, the orientation 
of the stripe domain pattern and the spacing between walls 
can be modified by external applied magnetic fields. The positions 
of the walls can also be modified in a similar way. Indeed, this 
feature has been demonstrated in a recent experiment involving 
an in-plane magnetized film in which the domain wall conduit 
for spin waves was displaced with a small magnetic field and 
the propagation was probed using microfocus Brillouin light 
scattering (BLS) (95; see Chapter 9 of this book).

8.3.2  Edge (Partial Wall) Channeling

Another important consequence of the DMI in finite-size 
nanostructures is the appearance of twisted spin states at 
boundary edges. To see how this arises in the micromagnetics 
description (continuum limit), it is useful to recall that the 
variational procedure leading the to the torque equation 
(Eqs. 8.1 and 8.2) also gives rise to a boundary condition of the 
form n . дU/д(m) = 0, where n is a unit vector normal to the 
surface of the material considered [29, 76]. With only energy 
terms due to the exchange interaction and perpendicular 
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anisotropy, one obtains the usual free boundary condition, дnm = 0, 
in the absence of any surface pinning. Crucially, the inclusion 
of the DMI requires satisfaction of twisted boundary conditions. 
For example, the boundary surface n = ŷ has the conditions

	 Dmz + 2A∂ymy = 0, –Dmy + 2A∂mz = 0,	 (8.7)

which couples the perpendicular magnetization mz with gradients 
in the transverse components mx,y and vice versa [29, 76]. 
Such conditions lead to tilts in the magnetization at the edges even 
if the system is uniformly magnetized in the bulk.

An example of magnetization tilts at edges is shown in 
Fig. 8.7. The profiles were computed with micromagnetic 
simulations by first allowing a uniformly magnetized state in a 
512 nm × 512 nm × 1 nm square dot to relax under several values 
of the DMI. Stronger tilts occur when the strength of the DMI 
is increased, and the sign of the transverse component of the tilts 
is reversed along with the sign of the DMI (Fig. 8.7a,b). In fact, 
these profiles are well described by partially expelled Néel walls. 
This is shown by the solid curves in Fig. 8.7c, which represent 
the theoretical wall profile mz(y) = tanh [(–y – yc)/l] at the 
right edge, where yc is the position of the domain wall center 
outside the film, as illustrated schematically in Fig. 8.7b. 
On the basis of this wall profile and the boundary conditions in 
Eq. 8.7, it is possible to derive an analytical expression for the 
partial wall position, as sketched in Fig. 8.7b (for yc > 0),

	 –1 2
– = cosh ,

2c

w A
y

D

 
l   l

	 (8.8)

where w is the wire width. This behavior is reminiscent of the 
partial twists encountered in exchange-spring systems and 
ferromagnet-antiferromagnet bilayers where the gradual rotation 
of the uniformly magnetized hard (ferromagnetic) layer creates 
torques at the interface that are compensated by formation of a 
partial wall structure in the soft (antiferromagnetic) layer [52]. 
Here, the DMI acts to pin a partial wall at the edges through 
Eq. 8.7, and the strength of the DMI governs the extent to which 
the partial wall enters the film. The analytical model agrees 
well with the simulation results (Fig. 8.7d).
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Figure 8.7  Twisted spin states at boundary edges due to the DMI. 
(a) Transverse magnetization component at the boundary edges 
(located at y = ±256 nm) of a 512-nm-wide rectangular wire. (b) 
Illustration of the magnetization tilts for D > 0, with the shaded 
regions representing the tilts shown in panels (a) and (c). The partial 
wall (dashed curve) is shown schematically, with yc denoting the wall 
center and w the wire width. (c) The perpendicular component at 
the boundary edges, where the solid lines correspond to fits to a partial 
Néel wall profile. (d) Partial wall center yc as a function of D. Points 
are simulation data and the solid line represents Eq. 8.8. Reprinted 
with permission from Garcia-Sanchez et al. [29]. Copyright 2014 American 
Physical Society.

The consequences for propagation along the edges of the spin 
texture induced by the DMI follow from the previous discussion 
on channeling in Néel walls. Since the tilted magnetization 
at the edges are partial Néel walls, the tails that extend into the 
system possess a specific chirality determined by the DMI, and 
as a result, the energies of spin wave states propagating along a 
given edge will depend on their propagation direction relative 
to the (partial) domain wall orientation. As a consequence, the 
lowest-energy spin waves propagate only along one direction 
when localized on one side of the wire and flow in the opposite 
direction when localized on the other side.

Localization and Reconfigurability
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Figure 8.8 Nonreciprocal propagation in a thin rectangular wire. 
Spatial profiles of the dynamic magnetization resulting from a microwave 
field excitation, hrf, at (a) 50 GHz and (b) 16 GHz. The different wave 
vector components considered are illustrated. In panel (a), the excitation 
frequency is in the spin wave band and nonreciprocal propagation occurs 
for ktop and kbot, while kcen propagation is symmetric. In panel (b), the 
excitation frequency is in the gap of the bulk modes and only edge 
modes are excited. (c) Dispersion relations computed from simulations 
for D = 4.5 mJ/m2. Dots represent simulation results. The solid black 
curve represents the theoretical dispersion relation for exchange modes. 
(d) Dispersion relation for D = 2.5 mJ/m2. Reprinted with permission 
from Garcia-Sanchez et al. [29]. Copyright 2014 American Physical 
Society.

This nonreciprocal propagation can be seen in more detail 
in Fig. 8.8, where results from micromagnetic simulations of spin 
wave propagation in a thin rectangular wire are shown. For 
excitation frequencies in the spin wave band (Fig. 8.8a), three 
distinct wavevectors can be identified for propagation along 
one direction, which correspond to the top (ktop), center (kcen), and 
bottom (kbot) of the wire. For propagation towards the right, +x, 
we note that |ktop| < |kcen|< |kbot|, while for propagation towards 
the left, –x, the opposite inequality applies, |ktop| > |kcen| > 
|kbot|. Moreover, |ktop| = –kbot, which is a clear signature of 
nonreciprocal propagation. We observe a shifted dispersion 
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relation for the edge modes, while the central modes remain 
symmetric about kcen = 0 (Fig. 8.8c). For the central modes, the 
dispersion relation is well described by exchange-dominated 
spin waves, where the theoretical curve using our micromagnetic 
parameters agrees well with the simulated curves. For the edge 
modes, the shifted dispersion relation for D = 4.5 mJ/m2 is well 
described by a reduction in the spin wave gap due to the reduced 
anisotropy field at the edge in addition to a linear wavevector 
term that describes the nonreciprocity. As Fig. 8.7d shows, the 
center of the partial wall is located farther outside the wire for 
smaller values of the DMI, which results in a weaker nonreciprocal 
channeling effect. This can be seen in the dispersion relation of 
the edge modes in Fig. 8.8d, where the shifts become less 
pronounced as D decreases. This phenomenon is reminiscent of 
edge modes in topological insulators.

Channeling for the wire geometry is robust with regard 
to the curvature of the edge in the same way as for curved 
domain walls. We now discuss the consequences for finite-size 
nanostructures. In a circular dot, for example, it is known that 
clockwise (CW)- and counterclockwise (CCW)-propagating 
azimuthal spin waves are degenerate in frequency. The inclusion 
of the DMI, however, lifts this degeneracy by favoring one 
handedness over the other. To appreciate how this might occur, 
one can imagine the edge modes in a circular dot constructed 
by deforming a rectangular wire bent into a ring-shaped structure. 
The lowest-frequency spin waves traveling along the outer 
circumference can propagate with only one handedness. Spin 
waves traveling along the inner circumference travel with the 
opposite handedness at the same frequency.

Figure 8.9 illustrates the spin wave eigenmode spectra for 
a circular dot 100 nm in diameter and a square dot 100 nm in 
width. A key feature is the frequency splitting of certain modes 
as the strength of the DMI is increased. The frequency of other 
modes, on the other hand, are only slightly affected by the DMI. 
For a similar dot size, the magnitude of the splitting appears to be 
larger for the circular dots, which suggests that the azimuthal 
component of the eigenmodes plays an important role. For the 
circular dots, the frequency splitting with increasing DMI is 
associated with lifting in the degeneracy of eigenmodes with a 
strong azimuthal character, such as Modes 2 and 3 in Fig. 8.9c.

Localization and Reconfigurability
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Figure 8.9 Map of the eigenmode power spectral density (PSD) as a 
function of D for (a) 100-nm-diameter circular dots and (b) 100-nm-
wide square dots. Selected profiles of the four lowest modes for different 
strengths of the DMI for the (c) circular and (d) square dots. Reprinted 
with permission from Garcia-Sanchez et al. [29]. Copyright 2014 American 
Physical Society. 

While there is no discernible change in the spatial profile of 
these modes, a frequency splitting of around 1 GHz appears at 
D = 2.5 mJ. Modes with a strong radial character, such as Modes 
1 and 4 in Fig. 8.9c, experience only a slight decrease in their 
frequency with increasing D and little change in their spatial 
profile. These differences can be understood in terms of the 
nonreciprocal wall channeling described earlier, where radial 
modes are similar modes that traverse a domain wall, while 
azimuthal modes are similar to modes that are channeled by the 
domain wall, which are strongly nonreciprocal. Similar features 
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are also seen in the square dots, but the distinction between 
radial and azimuthal modes is not as sharp. One difference can 
be seen in Mode 4 in Fig. 8.9d, which represents a mixed radial-
azimuthal excitation for which splitting due to the DMI results 
in an asymmetric profile at higher frequencies.

8.3.3  Magnetic Configurations in Artificial Spin Ice

Artificial spin ice (ASI) is a class of magnetic materials created by 
patterning single-domain ferromagnetic islands in such a way 
as to introduce some degree of frustration through competing 
interactions [40]. The magnetic elements are typically fashioned 
as elongated islands with nanoscale dimensions in order to 
ensure that their magnetic state is single domain with a large 
uniaxial shape anisotropy so as to approximate a rigid block 
spin [27, 67, 71]. In magnetic ASI composed of discrete elements, 
interactions are provided by the stray magnetic fields associated 
with the individual elements.

Square ASI is one of the first and best-studied ice 
geometries [92, 96], along with the fully frustrated kagome 
lattices [62]. A variety of other structures have also been since 
studied, including Penrose [3] and Shatki lattices [16, 30] as well 
as suggestions for many others [31, 75].

In what follows we will discuss exclusively square ASI for 
which the magnetic elements are aligned in two sets of rows on 
a square lattice. One set has elements aligned along one axis of 
the lattice, and the other set of elements is aligned along the 
other orthogonal axis. An example of the unit cell of a square lattice 
is shown in Fig. 8.10. Each vertex, defined by the four ends of 
adjacent magnetic elements, can be characterized by an 
average magnetization magnitude (called the charge) and its 
direction. There are 16 unique configurations possible with charges 
varying from –4 to +4 and 8 possible alignments for non-zero 
magnetization values. The dipolar coupled square ASI ground state 
complies with the ice rule, that is, a two-in, two-out configuration, 
and can be thought of as a mesoscopic antiferromagnet with 
two well-defined ground states. An appealing aspect of ASI is 
the ability to modify macroscopic magnetic properties through 
design of the ASI geometry and generate new functionality 
[3, 30, 58].

Localization and Reconfigurability
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The soft transition metals commonly used to fabricate 
ASI exhibit high-frequency electromagnetic resonances in the 
gigahertz range. The resonances correspond to band center, long-
wavelength spin waves. We discuss below results obtained using 
BLS. This technique has been used to obtain experimental values 
for a number of magnetic parameters: magnetic anisotropy [41, 60], 
gyromagnetic ratio [84], exchange constants [35], and saturation 
magnetization.

The mode structure of a spin wave in individual elements 
is well understood [45]. Spin wave modes observed in micron- 
and submicron-size magnetic elements are confined modes 
with stationary character and their energies are primarily 
magnetostatic [32]. Most importantly, modes exist which are 
localized to edges and ends of the magnetic elements. These 
modes have dipolar stray fields [45], which extend away from 
the material, although they decay exponentially away into the 
surrounding medium. In addition, since the elements are in a 
single-domain state, there is a non-uniform distribution of 
demagnetizing fields in the elements, which is most pronounced 
near the edges and corners. These can lead to some curling 
of the magnetization within an exchange length of the edges and 
serves to affect the frequency of end-localized modes. 

The magnetic elements lie along the sides of squares and 
the frequencies of modes depend upon whether the magnetization 
of individual elements are aligned by the applied field along easy 
or hard directions of the elements. Micromagnetic simulations 
were used to identify the excitations measured in the independent 
elements.

Details of sample fabrication and experimental procedure 
can be found in Ref. [57]. Results from two BLS configurations 
are discussed. First, the frequency dependence on the wavevector 
(qk) was studied with a 3 kOe magnetic field applied along 
directions at 0° and 45° with respect to the ASI lattice. The 
angle of incident light, q, upon the sample varied from 0° to 60°  
corresponding to the in-plane wavenumber qk from 0 to 2 × 1017 m–1. 
Two scattering geometries were studied: the DE for spin waves 
with wavevector k perpendicular to the external field H, and the 
backward volume (BA) mode configuration for spin waves with 
the wavevector parallel to the applied field. In the second 
configuration, the angle of incidence of the illuminating laser 
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was fixed at a = 20°. The external field H was, however, varied 
from +4 kOe to –4 kOe and applied along the 0° and 45° 
orientations with respect to the ASI lattice.

Spin wave dispersions were measured to indicate the possible 
inter-island dynamic coupling and propagation of collective spin 
waves through the array. Parts (a) and (b) of Fig. 8.10 are shown 
for the two different magnetic field orientations. When the 
field is applied at 45°, there are two well-defined peaks in the 
spectra, while at 0° up to seven peaks are visible in two 
different frequency ranges with the larger in-plane wavevector. 

Figure 8.10 Sequence of BLS spectra measured at different incidence 
angles with the external field of 3 kOe applied at (a) 0° and (b) 45°. 
The wavevector of the incident light parallel to the applied field in 
the Damon–Eshbach configuration. Spin wave dispersion curve of ASI 
at a 3 kOe (c) parallel field and (d) diagonal field. Dots are experimental 
results and lines are guides for the eye. Reprinted with permission 
from Li et al. [57]. Copyright 2016 IOP Publishing Ltd.

Localization and Reconfigurability
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Frequencies measured for different wave numbers are shown 
in Fig. 8.10c,d with the field applied along an array edge and 
diagonal orientation. The dispersion curve is almost flat, indicating 
that dynamic coupling between individual island resonances 
is negligible in the ASI system with this spacing. In fact, careful 
micromagnetic studies of square ASI with this element design 
suggest that it is not possible to produce magnonic bands with 
the DE geometry because of the difficulty in bringing edge mode 
localizations on adjacent elements sufficiently close in order to 
produce strong dynamic interactions. Some examples of the localized 
mode profiles for these element geometries are shown in Fig. 8.11.

Figure 8.11 (a) Frequencies of the spin wave eigenmodes as a function of 
the applied field parallel to the ASI islands. Dashed lines are the cutoff 
points between saturated and unsaturated regions of the hard-axis 
magnetization. (b) Spatial profiles of the eigenmodes at different field 
strengths for H1 (upper panel) and H89 (lower panel), with frequency 
increasing from left to right. Reprinted with permission from Li et al. [57]. 
Copyright 2016 IOP Publishing Ltd.
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We note that Iacocca et al. [45] have theoretically calculated 
the magnonic band structure of a square ASI array and show that 
the Brillouin zone energy variations of band structure are in the 
order of 0.1 GHz for spacing similar to our system. Their results, 
however, do not take into consideration coupling via localized 
modes. This suggests that with careful element design and 
spacing, it may be possible, at least in principle, to create magnonic 
bands in a square ASI lattice geometry.

The field dependence of the frequencies obtained in the DE 
scattering configuration is presented in Fig. 8.11a. The measured 
frequencies are shown by square symbols, and the magnetic field 
is oriented along the 0° direction. Several distinct modes are 
identified from the spectra, and each exhibits different behavior 
for fields in the region of hysteresis between +4 and –4 kOe. The 
frequencies were recorded from spectra obtained by decreasing 
the field from positive to negative saturation, thereby following 
the upper branch of the magnetization loop. The behavior of 
the frequencies is roughly linear with field outside this region, 
as one expects for saturated elements.

At the coercive fields, several modes appear to merge with 
others or disappear entirely. The two lowest-frequency modes 
have minima near the coercive fields. At a zero field, mode 
crossings appear in two higher-frequency modes. These modes in 
the horizontal islands appear to be softening at negative applied 
fields. Except for the mode crossings, the behavior of the mode 
frequencies for the vertical islands with the applied field are 
symmetrical so that minima again appear for the lowest- 
frequency modes at around a ±1.3 kOe field, marked by two 
black dashed lines, and there is a linear increase of frequencies 
for fields outside the hysteresis region.

An analysis of the mode structure was performed using 
micromagnetic simulations with parameters detailed in Ref. [57]. 
The frequencies were calculated in the following way. At each field 
step after relaxation to a steady-state configuration a field pulse 
is applied and oriented along the z axis. This drives oscillations 
in the components mx, my, and mz in each micromagnetic 
discretization cell, and their responses are recorded every 
picosecond. Frequencies and intensities of spin wave modes are 
then calculated using a discrete Fourier transform (in time and 
space) of the magnetization component, mz, for each cell [61].

Localization and Reconfigurability
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The frequencies calculated in this way are shown in Fig. 8.11a 
by solid lines for the horizontal elements (for which the 
applied field is collinear) and the dotted blue lines for the vertical 
elements (for which the applied field is perpendicular to the 
element axes). The simulations describe well the measured 
frequencies. The small discrepancies may be due in part to the 
effects of edge roughness [34] and neglect of static interaction 
fields. These static fields can be quite large, on the order of 
several hundred oersteds in the saturated state.

To identify which of the confined modes are responsible for 
the spectra, the spatial profile of the magnetization dynamics 
mz was calculated, and examples are shown Fig. 8.11b. For the 
analysis which follows, we use the same classification protocol 
as in Ref. [33].

The modes are classified into four categories: backward 
(m-BA), Damon–Eshbach (m-DE), edge (m-EM), and fundamental 
(F). In this classification, the integer m indicates the number of 
nodal lines. The m-BA mode is a mode with the nodal line 
perpendicular to the magnetization. Nodal lines parallel to the 
magnetization are called m-DE. The edge modes, m-EM, are 
localized at the ends of the islands and normally have a 
small intensity in the BLS spectrum. The fundamental F is the 
Kittel uniform resonance (m = 0). This mode typically has the largest 
intensity.

The modes associated with the horizontal elements are 
labelled in Fig. 8.11 as 1-EM1 and F1, representing, respectively, 
the EM and fundamental modes. These mode profiles remain 
unchanged in intensity for magnetic fields between 3 kOe to 1 kOe. 
F1 appears to soften for fields more negative than −50 kOe, 
consistent with reversal of the magnetization of the horizontal 
element. We note that the calculated 1-EM1 mode has two minima 
in the unsaturated region. This corresponds to curling of the 
edge magnetization. Note also the difference in amplitude of the F 
mode for the 1 and 3 kOe fields.

Modes for the vertical elements are labelled EM89, DE89, 
E89M, F89, EM89, EM89, and EM89. The corresponding spatial profiles 
shown in the bottom of Fig. 8.11b. The EM89 mode possesses the 
lowest frequency. Hybridization is more apparent in the higher-
frequency modes, where a mix of an F mode with EM and DE 
modes occurs. As for the horizontal elements, there is significant 
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dependence of the mode amplitudes on field, as seen by comparing 
the profiles for 2 and 3 kOe. Furthermore, the frequency of the EM 
mode is smallest at 1.5 kOe as the magnetization begins to saturate 
perpendicular to the element axis [64].

8.3.4  Reprogrammable Microwave Response 

The example mode profiles displayed in Fig. 8.11 illustrate how 
simple magnetic configurations can be used to generate a rich 
spectrum of microwave responses for uniformly magnetized 
particle arrays. When the applied magnetic field is small, in the 
range between +1.5 kOe and –1.5 kOe, the magnetization of the 
array is not uniform although the magnetization of individual 
elements is still single domain. In the spin ice discussed so far, 
inter-element static interactions are relatively weak, and the 
ordering of neighboring element magnetizations are not 
strongly correlated. However, in spin ice with stronger static 
interactions, obtained, for example, by patterning thicker films 
with closer inter-element spacing, correlations can be observed. 
In some systems mesoscopic domains of ordered elements have 
been observed, with boundaries defined by conjoined lines of 
mesoscopic analogies to domain walls.

If we are to use such complex arrangements of dipolar 
coupled magnets for device applications [46], then a first 
important step is to be able to control the configurations 
resulting from inter-element correlations. One way to do this is 
to modify individual islands, for example, making them narrower 
(wider) than the rest of the islands in the array so that the 
shape anisotropy, and therefore the island switching field, is 
higher (lower). In this way, one can determine in a controlled 
manner where Dirac string avalanches in quasi-infinite ASI 
arrays start and where they stop [44, 62]. In small clusters, 
one can use this to control the field-induced states and vortex 
chirality [39].

Another intriguing approach is to ask whether it is possible 
to create a specified configuration of magnetic moments with 
a sequence of applied magnetic fields. In particular, a field 
oriented along certain directions can drive specific element 
reversals and avalanches, where the reversal details depend upon 
the magnitude of the field and disorder in the system. An analysis 
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of this concept was made in simulations whereby specific 
configurations were tracked for sets of possible field sequences 
[11]. It was found that a sequence of such fields can access a 
small subset of states but not all states. However, it is possible to 
increase the number of states accessible to a finite sequence of 
fields by controlling a small number of element orientations. 
An example is shown in Fig. 8.12. In Fig. 8.12a, the four 
configurations in a 16-spin square array that can be accessed for 
a certain applied field strength are shown. The starting point 
is a fully polarized lattice, and for this particular field strength 
there are only two configurations available to evolve into. 
Which configuration appears depends on the direction of the 
applied field. One additional configuration is possible from each 
state and arrived at by applying the field in a new direction. 
The exact configurations are depicted in Fig. 8.12a where the top 
and bottom pairs of configurations correspond to the two possible 
evolutions. Controlling one of the corner spins, indicated by the 
circular frame, allows one to access many more configurations, 
as shown in Fig. 8.12c, where one is able to access 128 different 
configurations through alignments of the control spin and different 
orientations of the applied field.

Micromagnetic simulated examples of how control of magnetic 
array configurations on mesoscopic length scales can be used 
to configure microwave response is shown in Fig. 8.13. In this 
figure are two examples of how mesoscopic analogies to domain 
walls can be used to channel microwave resonances of strongly 
interacting magnetic elements. Square ASI, coupled by dipolar 
fields, is antiferromagnetic with two ground-state configurations 
represented by a two-in, two-out spin ice rule for each vertex of 
four magnetic elements. These ground states are labelled as 
“Type I.” The geometry of the square spin ice defines the two 
ground states as incommensurate arrangements, which 
cannot coexist without a topological boundary separating the 
arrangements. The boundary is the equivalent of a microscopic 
magnetic domain wall and is labelled as “Type II” in the figure. 
In Fig. 8.13a the Type II configuration defines a straight path 
through the magnetic array, and in Fig. 8.13b the Type II 
configuration represents a corner. In both cases, microwave wave 
frequency excitations exist for the Type IIs that are distinct in 
frequency and profile from the excitations that can exist in the 
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Type I regions. The profiles of these resonances are shown in 
the panels on the right-hand side of Fig. 8.13. The excitations 
are resonances strongly localized to the magnetic element ends 
defining the vertices between neighboring elements.

Figure 8.12 Effect of a control spin on allowed configurations of a 16-
element array. The reference configuration for the array is with all 
spins pointing to the right, that is, the black arrows. Without a control 
spin, a field strength of h = 11.5 is large enough to access only four 
configurations. These configurations are shown in (a), begin with 
reversals of edge element spins, and are accessed by applying the field 
along specific directions. The corresponding map of allowed configurations 
is shown in (b), where each dot represents a unique configuration 
of element spins and each line represents an orientation of the field 
(with fixed magnitude h). To illustrate the effect of including a control 
spin, we specify the orientation of an element spin at the lower-left 
corner of the array, indicated with a circular frame in (a), in addition 
to, and independently of, the applied field. This allows, in principle, 
two different flipping processes for each field orientation corresponding 
to the two different orientations of the control spin. The cumulative 
effect of these different flipping processes is that a multitude of 
configurations can be accessed depending on the orientation of the control 
spin and the direction the field is applied, even though its magnitude 
is still h. In (c) the corresponding configurations are shown. Reprinted 
with permission from Budrikis et al. [11]. Copyright 2012 IOP Publishing 
Ltd. 

Localization and Reconfigurability



250 Spin Waves on Spin Structures

Figure 8.13 Control of microwave resonances in different spin ice 
configurations. In (a), two domains of ground-state configurations of 
magnetic elements in square spin ice (designated “Type I”) are separated 
by a line of differently aligned elements (designated “Type II”). The Type 
II configurations are the mesoscopic equivalent of a magnetic domain 
wall. The magnetic resonances associated with the Type II configurations 
are distinct from the resonances of the Type Is and represent a 
channeling of resonances along the direction defined by the Type IIs. 
This channeling is illustrated in (b), where the Type II configuration is 
directed around a corner separating two Type I domains. The resonances 
associated with this configuration are localized strongly to the element 
edges at the vertices of four neighboring elements.

The ability to spatially localize and configure microwave 
frequency resonances in an ASI array is only one example of how 
patterned magnetic elements may be used to control microwave 
properties on micrometer length scales. Reconfigurability, 
perhaps through some scheme such as that outlined in Fig. 8.12, 
may enable a new type of microwave device based on artificial 
magnetic materials created through mesoscopic engineering, as 
exemplified by the construction of ASI.

8.4  Outlook

We close with a few comments regarding the important topics of 
charge and spin transport. It may be possible to utilize and control 
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spin wave excitations in new ways, for example, through spin 
caloritronics in which spin currents can be created by thermal 
gradients. Spin-orbit coupling, discussed earlier in relation to chiral 
interactions, can also affect the transport of angular momentum 
via spin currents across interfaces and give rise to spin Seebeck 
and spin Hall effects. These are so named due to their analogies to 
conventional charge transport [20, 21, 89, 91], and spin currents 
are believed to interact with spin waves. This opens up exciting 
possibilities for electric field control of spin waves.

Further afield are other growing areas of activity. Plasmonic 
metamaterials have many possible applications and are, in 
principle, subject to control via applied magnetic fields. It turns out 
that magnetically polarizable elements in a plasmonic array can 
enable different properties to be “tuned” using externally applied 
magnetic fields. An example is negative refraction [12, 56, 63, 70]. 
Additional developments include laser-induced switching [72] 
and optically controlled charge and spin currents for information 
encoding and transfer. These advances may allow the generation 
and guidance of spin waves using all-optical techniques [77].

There are enormous possibilities for the manipulation of 
magnetic element structure and composition with nanoscale 
precision in two and even three dimensions. Because of a 
rapidly evolving lithographic technology, there exist new, 
unexplored opportunities for designer metamaterials. It is 
possible, for example, to examine topics from entirely different 
fields within the context of spin wave materials. As an example, 
electrical conduction in topological insulators is a phenomenon 
that arises from the way electronic states can form near material 
boundaries. The topological phase is a property of waves that 
can be realized for wavelike excitations that are distinct from 
electron waves and electronic band structure. In particular, 
analogies to topologically protected surface states have been 
proposed for spin waves in magnetic materials [48]. Essential 
for realization of these phenomena is the ability to geometrically 
pattern magnetically functional matter on appropriate length 
scales.

The fascinating interplay between symmetry, interactions, 
and physical properties is now being explored at the micro- and 
nanoscale in ways that were not possible a few years ago [10]. 

Outlook
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For over one hundred years, wave interference in periodic 
structures has been studied [74] and has led to our understanding 
of, for example, localization [47] and the engineering of bandsand 
bandgaps [99]. In terms of magnonics, we now have available a 
large number of ways to introduce novel electric, magnetic, 
thermal, elastic, and electromagnetic responses in artificially 
designed materials. In this chapter we have described a number 
of recent examples of how relatively simple material designs can 
produce spin wave phenomena, such as channeled nonreciprocity, 
that is at once interesting and potentially useful. The prospects 
are very encouraging, indeed, for exploiting new capabilities of 
sample fabrication at mesoscopic length scales in order to create 
new magnonic metamaterials and devices for broad application 
across information and communications technologies.
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