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a DMI-stabilized Néel wall. We found an 
extra chiral term associated with the DMI 
in the effective potential that describes the 
wall and treat it as a perturbation. While 
the spin waves exhibit a reciprocal disper-
sion, other interesting features as spin 
wave refl ection by the wall and hybridiza-
tion of the modes result from the DMI 
term. 

 We illustrate the hybridization of the 
modes and the refl ection by considering 
a magnonic crystal formed by a periodic 
array of domain walls in a nanowire with 
DMI. Without DMI, the walls are Bloch-
type walls, which are known to represent 
refl ectionless potentials for spin waves 

traveling through them. [ 15–17 ]  This results in a gapless band 
structure. However, with DMI the stable confi guration becomes 
an array of Néel-type walls with a modifi ed potential for the 
spin waves, which is no longer refl ectionless and standing 
waves appear at the edges of the fi rst Brillouin zone producing 
gaps in the band structure. This article is organized as follows. 
In Section 2, the model and calculations involving the static 
domain wall profi le are presented. In Section 3, the spin-wave 
eigenmodes of the Dzyaloshinskii domain wall are computed 
using a variational method in the continuum approximation. 
Consequences of these eigenmodes are then explored in Sec-
tion 4, where the refl ection and transmission coeffi cients for 
propagating spin waves through the domain wall are computed 
and band gaps in associated with periodic wall arrays are dis-
cussed. Finally, a discussion and some concluding remarks are 
given in Section 5.  

  2.     Model and Static Wall Profi le 

 An ultrathin ferromagnetic wire is considered in which a 
domain wall separates two uniformly magnetized domains 
along the  x  axis, as shown in  Figure    1  . For the main purpose 
of this work, it is more convenient to work with the magneti-
zation as a fi eld   M  (  r  ) rather than with the individual spins. 
This macroscopic theory remains valid in the long wavelength 
approximation,  ka  << 1, where  k  and  a  are the spin-wave vector 
and the lattice parameter, respectively. It has the advantage that 
we can easily introduce phenomenological constants related 
to interface anisotropies, magnetostatic energy, and exchange 
interaction.  

 The energies we have considered account for the most 
important symmetries of the problem, and the magnetization 
orientation, represented by the unit vector   m  , is parametrized 
using spherical coordinates as   m  = M  /| M  s  | = (sin  θ  cos  φ , sin  θ  
sin  φ , cos  θ ) ,  where  θ  =  θ (  r  ,  t ),  φ  =  φ (  r  ,  t ) and  M  s  is the saturation 

 A theory for the spin-wave eigenmodes of a Dzyaloshinskii domain wall is 
presented. These walls are Néel-type domain walls that can appear in per-
pendicularly magnetized ultrathin ferromagnets in the presence of a sizeable 
Dzyaloshinskii–Moriya interaction. The mode frequencies for spin waves 
propagating perpendicular to the domain wall plane are computed using a 
continuum approximation. In contrast to Bloch-type walls, it is found that 
the spin wave potential associated with Dzyaloshinskii domain walls is not 
refl ectionless, which leads to a fi nite scattering cross-section for interactions 
between spin waves and domain walls. A gap produced by the Dzyaloshinskii 
interaction emerges and band structures arising from periodic wall arrays are 
discussed. 

  1.     Introduction 

 The Dzyaloshinskii–Moriya interaction (DMI) is an antisym-
metric contribution to the exchange energy that can exist in 
spin systems that lack inversion symmetry. [ 1–3 ]  Spin textures 
stabilized by DMI are of special interest due to the possibility 
of new technological applications. [ 4–6 ]  For room temperature 
operation, interface DMI is of particular importance in terms 
of thin fi lm structures based on transition metals, compatible 
with traditional spintronic devices. It has been shown in per-
pendicular materials that because of DMI compensation of the 
dipole–dipole interaction at the center of a domain wall, a Néel-
type domain wall is favored with important enhancements of 
domain wall stability and mobility. [ 7,8 ]  Small amplitude fl uctua-
tions of the magnetization about equilibrium—spin waves—in 
systems with DMI have been studied experimentally, [ 9 ]  and the-
oretically [ 10–12 ]  for interface DMI fi lms. A key feature is nonreci-
procity of frequency as a function of propagation direction for 
fi nite wavelength spin waves, which emerges from the chiral 
symmetry breaking DMI. For domain walls, it has been shown 
that the nonreciprocity appears when spin waves propagate 
parallel to the domain wall plane. [ 13,14 ]  In the present work, we 
focused on spin wave propagation perpendicular to the plane of 
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magnetization. The total magnetic energy of this system is 
given by the functional  U  [ θ (  r  ),  φ (  r  )], 
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 The fi rst term describes the isotropic part of the exchange 
interaction and where the exchange stiffness constant  A  is 
related within the continuum approximation to the exchange 
integral  J  in a simple cubic lattice by  A = JS  2  /a , with  a  is the lat-
tice constant and  S  is the spin. The second term describes the 
antisymmetric contribution to the exchange interaction given by 
the DMI. Unlike the isotropic part, this interaction is linear in the 
spatial derivatives of the magnetization. For a multilayer system 
with a heavy-metal substrate its from is given in terms of the 
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Finally, the third term describes the total anisotropy of the 
system. The constant  K  o   = K  u   − µ  0  M  s  2 /2 is the effective anisot-
ropy along the  z  axis, where  K  u  is related to the magnetocrys-
talline anisotropy and  −µ  0  M  s  2 /2 accounts for the perpendicular 
demagnetizing fi eld effect in the local approximation. The con-
stant  K  ⊥ , that favors a Bloch-over a Néel-type wall in the absence 
of DMI, is a magnetostatic anisotropy along the  x  axis related to 
the demagnetizing coeffi cient  N  x    by  K  ⊥  = μ 0  N   x   M  s  2 /2 in the 
local approximation. 

 The static profi le of the domain wall is determined by mini-
mizing the energy functional in Equation  ( 1)   with respect to 
( θ  0  , φ  0 ). We assume a straight wall so that there is translational 

invariance along the  y -direction. Furthermore, we assume a 
planar wall, which requires  φ ( x ) = φ  0 . The equations satisfi ed by 
the static wall profi le ( θ  0  , φ  0 ) are given by 
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 which are two coupled, nonlinear differential equations. Note 
that the second equation above is satisfi ed by the  φ  0  ansatz for 
fi nite values of the DMI,  D  ≠ 0, only if the domain wall assumes 
a pure Néel profi le ( φ  0   =  0 or π). By assuming a Néel wall state, 
the solution for  θ  0  ( x ) can be written as the usual domain wall 
profi le with a width λ ( )= + ⊥/ uA K K
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 where  X  0  denotes the wall center, which is arbitrary. The solu-
tion with the positive sign in the argument of the exponential 
function gives the confi guration illustrated in Figure  1 . With 
this solution, the total domain wall energy  ( 1)   can be evaluated 
to be 

 
∓σ θ φ π[ ] ( )≡ = + ⊥, 4 ,w 0 0 uU A K K D

  
(5)

 

 where the negative sign corresponds to the solution  φ  0  =  π  and 
the positive sign to  φ  0  = 0, which indicates that left-handed Néel 
walls are preferred energetically for  D  >  D  c  =  4λK  ⊥ /π > 0.  

  3.     Spin-Wave Hamiltonian 

 We are interested in linearized excitations about the stable con-
fi guration. We approach this by expanding the magnetic energy 
functional, Equation  ( 1)  , up to second order in small fl uctua-
tions (δ θ,  δ φ ), depicted in Figure  1 , around ( θ  0  , φ  0 ). By allowing 
the fl uctuations to vary in space, [ 16,19 ]  we can identify the spin-
wave Hamiltonian, 
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 where  V  P  ( x ) = [1−2 sech 2 ( x / λ )]. The physical picture of Equa-
tion  ( 6)   can be thought of as a wave traveling through an effec-
tive potential specifi ed by the underlying domain wall, wherein 
the hyperbolic secant terms account for the domain wall struc-
ture. In particular, the DMI term,  D  sech( x / λ ), results from the 
chiral symmetry breaking of the stable confi guration given by a 
left-handed Néel-type wall. There is an elliptical precession in 
the fl uctuations because of the extra terms in the  δφ  component 
due to the DMI and the  K  ⊥ . 
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 Figure 1.    Geometry considered for the Néel-type Dzyaloshinskii domain 
wall.  X  0  denotes the position of the wall center along the  x  axis. Transla-
tional invariance is assumed along the  y -direction and the magnetization 
is taken to be uniform across the thickness of the fi lm in the  z- direction. 
Small fl uctuations ( δθ, δφ ) are presented when the magnetization is para-
metrized in spherical coordinate.
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 Interestingly, while the  K  ⊥  produces a constant ellipticity, 
the DMI introduces a spatial dependent ellipticity through the 
 D  sech( x / λ ) term. The Schrödinger type operator,  −λ  2  ∂ x   2   + V  P  
( x ), has been widely studied and is used to describe spin waves 
in a Bloch-type domain wall. [ 19–22 ]  Solutions to these operator 
include a single-bond state, 
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 with zero corresponding energy, and continuum-traveling 
states, 
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 with eigenenergy given by  ω k   = 1  + k  2  λ  2 . The above states form 
a complete orthonormal set, 
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 with which we can now expand our solutions to include the 
effects of DMI as a perturbation. We propose a linear superpo-
sition of the local and traveling modes, 

 ∑χ δφ δθ ξ ξ( ) ( ) ( ) ( ) ( )= + = + ,loc locx i x x ic x d xk k k   (10) 

 to calculate the spin-wave energy. After the space integrals are 
computed, we fi nd 
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 where the coeffi cients are given by 
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 The  A' k   and  B' k   terms denote elliptical spin precession as a 
result of the transverse anisotropy described by  K  ⊥  and corre-
spond to the usual terms found in the Bloch wall case. [ 14,19 ]  The 
 C k  ,  U km ,  and  V km   terms are proportional to the strength of  D  
and depend on  k  because these terms result from the spatial 
dependent ellipticity. 

 The  C k   terms represents the coupling between the local and 
the traveling modes, it is small compared to the other terms 

so it will not be considered.  U km   and  V km   are scattering terms 
that describe the transition from a state with momentum  h–k  
to another state with  h–m . If we focus on the maximum scat-
tering strength then the specifi c form of the coeffi cients,  U km   ≈ 
sech( k−m ) and  V km   ≈ sech( k + m ), allows us to approximate  U km   
and  V km   by delta functions  δ km  ,  δ k−m ,  respectively. We can then 
approximate  δH  as 
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 The fi rst term on the right hand side of Equation  ( 13)   can be 

related to the domain wall mass by 
π
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mass. [ 23,24 ]  The mass in a Bloch-type wall is  m B   = 1/(2 K  ⊥ ) so 

 m N  < m  B , which agrees with a higher mobility in Dzyaloshinskii 
domain walls. [ 25,26 ]  The remaining coeffi cients are 
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 In the limit  D →  0,  K  ⊥  →  0,  B k   = 0 and the frequency corresponds 
to that of a uniformly magnetized fi lm,  Ω k  

u   = 1/ h–  ( Ak 2  + K  o ). 
Equation  ( 13)   can be diagonalized by means of a Bogoliubov 
transformation, = −+ − *c u d u dk k k k k , � �( )= ± Ω Ω± / 2u Ak k k k, to 
obtain 

 
�∑δ π

λ
= − +⎛

⎝⎜
⎞
⎠⎟ + Ω⊥

4
loc
2 *H c

D
K c ck k k k

  
(15)

 

 where the frequency  Ω k   is given by 
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 where  a  ≈ 0.3 nm is the lattice constant. We fi nd a critical 
value, π= ≈ −4 / 3.6mJm2 o

2D AKc , in the limit  k →  0 that 
agrees with previous work, [ 7,14,27 ]  above which the domain wall 
becomes unstable. It is common to fi nd a nonreciprocal disper-
sion in systems under the infl uence of the DMI, however, this 
is not the case for the direction of propagation considered here. 
It has been shown that the nonreciprocity arises for propaga-
tion parallel to the plane of the wall, [ 13,14 ]  which in our geom-
etry corresponds to propagation along the  y- direction. Still, an 
interesting consequence, related with the refl ection of the spin 
waves, can be envisaged when we write the spin waves eigen-
modes in terms of the amplitudes  c k  ,  c  *  − k  , 

 
∑χ ξ ξ( )( ) ( ) ( )= + ++

−
−

loc loc
*x ic x c u c u xk k k k k k   
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 There is a hybridization between the localized mode,  ξ  loc  ( x ), 
and the traveling modes,  ξ k   ( x ) resulting from the DMI and  K  ⊥,  
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which are the terms inducing the ellipticity in the precession. 
For clarity, we defi ne  θ k   =  c k  ,  + c *  k   and  φ k   = ( c k− c *  k  )/ i,  so that the 
small fl uctuations are given by 
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 where the parameters  ε θ   = ( u   k   +  +  u   k   − )/2 and  ε φ   = ( u k  
+  + u k  

−  )/2 
represent the ellipticity in the spin precession. In a totally sym-
metric system ( K  ⊥  = 0,  D  = 0), the spins are circularly polarized, 
i.e.,  ε θ   =  ε φ   = 1/2.  

  4.     Band Structure in Periodic Wall Arrays 

 We have discussed the effects of the DMI in the spin-wave dis-
persion. We now examine how a DMI-driven Néel-type wall 
scatters the spin waves. The scattering potential for spin waves 
in a Bloch ( D  = 0) domain wall is represented by  −λ  2  ∂ x   2   + V  P  
( x ), which is refl ectionless but leads to a phase shift when spin 
waves propagate through it. [ 17,28 ]  This refl ectionless potential 
corresponds to a specifi c case of the so-called modifi ed Pöschl–
Teller Hamiltonian, [ 20 ] 
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 The parameter  l  describes the depth of the potential well,  α  
has units of distance and  �  is a dimensionless energy for the 
wave. For a Bloch-type wall,  l  = 2 and  α  =  λ . The transmis-
sion and refl ection coeffi cients related to the wave propagation 
across this potential have been calculated for this Hamiltonian 
as a function of the depth 
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 with  p =  sinh( πkα)/ sin( πl ). [ 29 ]  From this result, it can be seen 
by inspection that for ∈l N  |R|  2  is zero. For the Dzyaloshinskii 
domain walls, the Hamiltonian is 
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 where the dimensionless energy is 
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defi ne the dimensionless parameter  D′  = D /( λ ( K  o   + K  ⊥ )). It is 
possible to write Equation  ( 21)   as 
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 from where we can relate the depth  l  in Equation  ( 19)   with the 
DMI part in the effective potential, 

 

λ

λ( )( )
( )− = + ′

= ± + + ′⎡
⎣⎢

⎤
⎦⎥

1 2 cosh /
1
2

1 1 4 2 cosh /
.

l l D x

l D x
  

(23)   

 The depth  l  now has a spatial dependence due to the DMI. 
To make further progress we examine the form of the total 
effective potential and compare it with the Bloch-type poten-
tial, they are shown as solid lines in  Figure    2  . Although there 
is a small deformation in the total effective potential as com-
pared to the Bloch-type one, the main effect of the DMI is to 
increase the depth  l.  As the depth is measured at  x  = 0 we then 
take cos h ( x / λ ) = 1 in Equation  ( 23)  . Furthermore, the depth 
increases due to the DMI so that we take the positive root solu-
tion in Equation  ( 23)   as the physical solution. Under these 
assumptions the depth  l  is given by 
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 We show the potential obtained using Equation  ( 24)   as the 
dotted curve in Figure  2 , it corresponds to the exact form of 
a modifi ed Pöschl Teller potential. In the domain wall region 
−1 <  x / λ  < 1 no deformation can be observed, the maximum 
deviation at  x / λ  =  ± 1 is less than a tenth of  V  P /( K  o   + K  ⊥ ). 
Note that considering the opposite chirality,  D  < 0, results in 
a decrease of the depth and then the negative root solution in 
 ( 23)   would be the physical solution, and the same considera-
tions apply. 

 Two transmission coeffi cients were calculated as a function 
of the wave vector  k  using Equation  ( 24)   for different values of 
 D  and are shown in  Figure    3  . We include numerical simula-
tions to verify that our assumption is reasonable. The numer-
ical calculations were performed within a micromagnetic 
model. The calculations were done with the code mumax3. [ 30 ]  
The standard code includes the interface DMI term but was 
modifi ed to include at the same time the effective in-plane 
and out-of-plane anisotropies. The parameters used were 
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 Figure 2.    Effective potentials associated with the domain wall. The solid 
lines represent the exact form of the potentials, in black for a Bloch-
type domain wall and in red for a Dzyaloshinskii domain wall with  D  = 
1.5 mJ m −2 . The dotted line is the potential calculated using Equation  ( 24)  .
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 A  = 16 pJ m –  K  ⊥  = 18 kJ m −3  , K u   = 0.5 MJ m −3  and  λ  = 5.55 nm. 
The system was discretized in cells of 1.5625 × 1.5625 × 1 nm 3 . 
The geometry coincides with the one showed in Figure  1  and 
the system size was 12800 × 50 × 1 nm 3  with periodic boundary 
condition in  y- direction. To compare exactly with the analytical 
model, the calculations were performed without damping term 
and demagnetizing fi eld. A domain wall was introduced at the 
center of the sample and then the system was excited with a 
monochromatic point source of 50 mT applied fi eld, 1950 nm 
away from the domain wall. The amplitudes were calculated 
comparing the average envelope of the spin waves at both sides 
of the domain wall at the initial stages of the propagation. As  D  
increases signifi cant refl ection is found for larger values of  k . 
This is a direct result of the scattering terms in Equation  ( 11)  .  

 As a result of the DMI, the scattering effective potential asso-
ciated with the domain wall produces refl ection in the spin 
waves propagating through it. Spin-wave refl ection has been 
demonstrated due to the dipolar interaction in the absence of 
the DMI for propagation along the  x-  and  y- directions. [ 31 ]  In our 
model, spin waves propagating only along the  x- direction are 
refl ected, which makes it suitable for narrow nanowires. Spin-
wave-driven domain wall motion has been explained in terms 
of linear momentum transfer. [ 32 ]  When spin waves are refl ected 
from the wall there is a linear momentum transfer. It has been 
shown that in the theoretical case when no damping is consid-
ered the linear momentum transfer leads to a rotation of the 
plane of the wall but not to domain wall motion. [ 31 ]  We there-
fore expect that the inclusion of damping in our model would 
lead to a domain wall velocity, but the details are beyond the 
scope of this paper. It is important to emphasize that whatever 
physical mechanism is used to produce spin-wave refl ection 
damping is a key ingredient for linear momentum transfer-
domain wall motion. 

 To present the refl ection in a clearer way and to highlight a 
consequence of the DMI for magnonics, we propose a periodic 
array of Bloch and Néel-type domain walls and calculate the 

band structure. For any wave propagating in a crystal, the Bragg 
refl ection is the characteristic feature responsible for gaps at 
the edges of the fi rst Brillouin zone, where the Bragg condition 
is satisfi ed. Similar to the ion cores in the nearly free electron 
model, in our case the periodicity of the crystal is determined 
by the periodic potential that describes the domain walls. In 
direct analogy to the scattering of electrons by a crystal, we Fou-
rier transform Equation  ( 21)   and use the Bloch's theorem on 
 χ(x ) to obtain the central equation, 

 
∑( ) ( ) ( )− + − = 02Ak E C k U C k GG G   

(25)
 

 where  U G   are the Fourier coeffi cients of the potential. [ 33 ]  Equa-
tion  ( 25)   represents an infi nite set of equations connecting the 
coeffi cients  C ( k−G ) for all reciprocal lattice vectors  G . These 
equations are consistent if the determinant of the coeffi cients is 
zero. It is often only necessary to consider the determinant of a 
few coeffi cients. For our calculations an 11 × 11 matrix is used 
to numerically solve the central equation. 

 The period of the Dzyaloshinskii domain wall crystal can be 
determined with the Kooy–Enz formula that describes the stray 
fi eld energy for an arrangement of parallel band domains sepa-
rated by domain walls of zero width. [ 34 ]  For a particular case of 
 D  = 2.6 mJ m −2  and a fi lm thickness of 2 nm, the period is 
found to be  L  = 100 nm. The order of magnitude of the calcu-
lated period agrees with previous experimental results obtained 
in a system of two monolayers of iron on top of tungsten where 
the magnetic period was found to be 50 ± 5 nm. [ 27,35 ]  We note 
also that this period depends on the magnitude of an external 
applied magnetic fi eld, thus the periodicity can be adjusted with 
consequences on the band structure. 

 The calculated band structure of a domain wall crystal is 
shown in  Figure    4  . Our results are presented using the reduced 
zone scheme in which  k  is in the fi rst zone,  −π / L ≤ k ≤ π/L , 
and  G  is allowed to run over the appropriate reciprocal lattice 
points. The wave eigenfunctions at  k  =  ±π / a , where Bragg’s 
condition is satisfi ed, are not traveling but standing waves 
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 Figure 3.    Transmission coeffi cient for  D  = 1.3 mJ m −2  (red) and 
 D  = 2.6 mJ m −2  (black). The solid lines result from using equation  ( 22)   
and the points are numerical simulations as described in the text.

 Figure 4.    Calculated band structures of a domain wall crystal. No gaps at 
the edges of the Brillouin zone are found when the domain walls forming 
the periodic array are of a) the Bloch-type. In contrast, b) shows the band 
structure of a periodic array of Dzyaloshinskii domain walls where gaps 
of different magnitudes determined by the strength of the DMI ( D  = 
1.56 mJ m −2  ) are found at the edges of the Brillouin zone.
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formed by incident and refl ected contributions. The origin 
of the gap can be understood by considering the probability 
densities. For a pure traveling wave,  ψ  = exp( ikx ), its prob-
ability density is  ρ  =  |ψ|  2  = 1, which is independent of the 
space coordinate and therefore of  k . In contrast, for standing 
waves,  ψ  s  ≈ sin( πx / L ), the probability density,  ρ  =  |ψ  s  |  2  ∝ sin 2  
( πx / L ), vanishes for  x  =  L,  which corresponds to the center of 
the potential and to  ±π / a  in  k  space producing gaps. When the 
periodic array consists of Bloch-type walls (Figure  4 a) there is 
no refl ected contribution and the spin-wave traveling modes, 
 χ k   ( x ) (Equation  ( 8)  , do not produce gaps. However, the DMI 
favors the formation of Néel-type walls (Figure  4 b) that refl ect 
the spin waves described by the hybridized mode,  χ ( x ) (Equa-
tion  ( 17)  , causing the gaps in the band structure. Note that the 
translational invariance prevents the formation of a band struc-
ture for propagation along the  y  axis.  

  Figure    5   shows the fi rst gap frequencies as a function of 
 D  <  D c   2  in  k  = 0 and  k  =  π / L . For  k  = 0, the gap frequency 
increases monotonically for the values of  D  considered, while 
for  k  =  π / L  the gap reaches a maximum which for the para-
meters used in this work is  ΔF  ≈ 0.5 GHz.   

  5.     Conclusion 

 We have discussed the effects of the interface form of the 
DMI on spin waves propagating perpendicular to the plane 
of a DMI-driven Néel domain wall. Unlike the common non-
reciprocal dispersion found in other systems with DMI, we fi nd 
a frequency shift as compared to the dispersion found in the 
Bloch-type walls. We calculate the spin-wave eigenstate and fi nd 
that the localized mode hybridizes with the traveling modes as 
a result of an extra chiral term in the effective potential that 
describes the domain wall. While in the Bloch-type walls, spin 
waves are not refl ected and only acquire a phase shift, we fi nd 
that the DMI term in the effective potential scatters the spin 
waves and leads to refl ection. We propose a periodic array of 
domain walls to highlight the refl ection phenomenon. The 
band structure of the array exhibits gaps that resemble the 

ones found in magnonic crystals. An advantage of our pro-
posed model over magnonic crystals based on nanostructures 
with alternating magnetic parameters relies in the fact that 
an external, applied magnetic fi eld can be adjusted to modify 
the width of the domains suggesting the possibility of a tun-
able device. Acoustic and optical bands, and control over the 
frequency gaps are immediate consequences of such a tun-
able crystal. Another advantage of our model comes from the 
fact that domain walls are natural elements that minimize 
the energy of a magnetic system and therefore would at least 
ease some nanofabrication issues. Nevertheless, we recognize 
that the stabilization of the domains would be rather diffi cult 
because of magnetostatic effects, treated here within a local 
approximation, that would prevent straight and planar walls 
to be formed. Narrow nanowires might relieve this problem. 
Moreover, spin-wave damping is expected to be enhanced 
due to the spin–orbit origin of the DMI. While for the gaps 
in the band structure our proposal may still fi nd applications 
in samples with relatively weak DMI with consequently small 
band gaps, another phenomenon may be enhanced: spin-wave- 
driven domain wall motion due to linear momentum transfer is 
known to depend linearly on the damping.  
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