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Paths to annihilation of first- and second-order (anti)skyrmions via
(anti)meron nucleation on the frustrated square lattice
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We study annihilation mechanisms of small first- and second-order skyrmions and antiskyrmions on the
frustrated J1-J2-J3 square lattice with broken inversion symmetry (Dzyaloshinskii-Moriya interaction). We
find that annihilation happens via the injection of the opposite topological charge in the form of meron or
antimeron nucleation. Overall, the exchange frustration generates a complex energy landscape with not only
many (meta)stable and unstable local energy solutions but also many possible paths connecting them. Whenever
possible, we compute the activation energy and attempt frequency for the annihilation of isolated topological
defects. In particular, we compare the average lifetime of the antiskyrmion calculated with transition state theory
with direct Langevin simulations, for which excellent agreement is obtained.
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I. INTRODUCTION

Magnetic skyrmions are solitonic, particlelike, topo-
logically nontrivial magnetic textures. The existence of
(meta)stable skyrmionic solutions in a system requires the
introduction of a characteristic length scale via competing
interactions. This is typically achieved in noncentrosymmetric
magnets with the Dzyaloshinskii-Moriya interaction (DMI)
[1,2]. That particular type of solutions, commonly referred
to as chiral skyrmions, were theoretically investigated in the
1990s [3,4]. In magnets with inversion symmetry, skyrmions
can be stabilized via dipolar interactions (skyrmion bubbles)
[5–10], as well as frustrated exchange couplings [11–15].
Systems with frustrated exchange are particularly interesting,
as they allow many different kinds of topological defects to
coexist. The frustrated J1-J2 system on the hexagonal lattice
was extensively investigated in Ref. [16], and in general, the
frustrated hexagonal lattice is the one most commonly studied
[11,14,17–19]. Skyrmions decouple from the lattice in the
long-wavelength limit, and therefore, in that case, the choice
of the lattice does not matter [13]. Collapse mechanisms
of skyrmions and antiskyrmions in chiral thin films with
frustrated exchange were previously investigated [18,20] and
appear similar to the isotropic type of collapse calculated in
nonfrustrated chiral systems [21–26]. A third mechanism in-
volving the injection of a singularity with opposite topological
charge was reported in [24], but the path appears to go over
a higher-order saddle point. Additionally, this mechanism
seems to emerge for larger skyrmion sizes, yet it is perhaps
the closest to the type of mechanisms we report in this work.

In this paper, we look at paths to annihilation of first-
and second-order skyrmions and antiskyrmions on the frus-
trated J1-J2-J3 square lattice previously studied by Lin and
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Hayami [13]. We relax skyrmionic solutions spanning over
only a few sites in diameter that do not exhibit translational
invariance on the lattice and instead experience pinning at
particular lattice points. In the present system, the solutions
are too small to decouple from the underlying lattice. In
this context, we obtain new types of collapse mechanisms
which have, to date, not been reported. Interfacial DMI is
added to break the invariance with respect to the rotation of
helicity (i.e., the “spin” degree of freedom [13]), as well as
the degeneracy between skyrmions and antiskyrmions.

This paper is organized as follows. In Sec. II, we present
the model Hamiltonian and some useful definitions, as well as
a brief zoology of some of the different topological defects
that can be stabilized in the system. In Sec. III, we first
give regions of existence of metastable first- and second-order
skyrmions and antiskyrmions in parameter space. We then
present different mechanisms by which they annihilate, and
we confirm them by means of direct Langevin simulations. We
subsequently compute attempt frequencies associated with the
different mechanisms via transition state theory calculations.
Finally, the results are discussed in Sec. IV.

II. MODEL

We simulate a bidimensional square lattice of N magnetic
spins {mi} with a constant magnitude that we set to unity. We
use the classical Heisenberg model Hamiltonian,

E = −
∑
〈i j〉

Ji jmi · m j −
∑
〈i j〉

Di j · (mi × m j )

− K
∑

i

m2
z,i − Bz

∑
i

mz,i, (1)

where Ji j is the strength of the isotropic exchange cou-
pling extended to third-nearest neighbors (J1-J2-J3), Di j is
the Dzyaloshinskii vector restricted to first-nearest neighbors,
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FIG. 1. Different isolated topological defects stabilized in a frus-
trated magnet with inversion symmetry (d = 0) and reduced param-
eters (b, k) = (0.1, 0.1): (a) antiskyrmion (n = −1), (b) skyrmion
(n = 1; Bloch), (c) skyrmion (n = 1; Néel), (d) second-order
skyrmion (n = 2), (e) second-order antiskyrmion (n = −2).

K is the perpendicular, uniaxial anisotropy constant, and
Bz is the perpendicular applied magnetic field. The DMI
is interfacial and favors Néel skyrmions, in which case the
Dzyaloshinskii vector is defined as Dij = Dri j × ez, where
ri j is the in-plane direction between sites i and j [27]. We
introduce the reduced parameters: jα = Jα/J1, (α = 1, 2, 3),
d = |Di j |/J1, k = K/J1, and b = Bz/J1. We set k = 0.1 for the
rest of this study. The isotropic exchange coupling parameters
allow a spin-spiral ground state to be realized in the absence
of other interactions and are the following [13]: j2 = −0.35
and j3 = −0.15. Additional parameter values are given in
Appendix A. We define the topological charge [28]

Ns =
∫

dr2ρs = −n, (2)

in which ρs is the topological charge density, defined as

ρs = 1

4π
m · (∂xm × ∂ym). (3)

The quantity n in Eq. (2) is the winding number, or vortic-
ity, and counts the number of times the spin configuration
wraps the unit sphere S2. Solutions with a positive winding
number are called skyrmions, and solutions with a negative
winding number are called antiskyrmions. Contrary to chiral
skyrmions stabilized by DMI where the type of the DMI
favors one particular class of solutions, exotic spin textures
with various winding numbers and helicities can coexist in
frustrated magnets [13–16] (Fig. 1). Nonetheless, the possibil-
ity to stabilize structures with an arbitrary integer topological
charge in chiral magnets (“skyrmionic sacks”) has recently
been explored [29]. In the absence of inversion symmetry
breaking, skyrmions [Figs. 1(b) and 1(c)] and antiskyrmions
[Fig. 1(a)] with opposite winding numbers are degenerate
in energy. Additionally, magnets with inversion symmetry
possess a spin degree of freedom (where “spin” refers to
the spin of the skyrmion as a particle), associated with a
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FIG. 2. For k = 0.1 and different values of the reduced DMI
constant d and the reduced applied field b, the existence of (a) an
isolated skyrmion solution, (b) an isolated antiskyrmion solution,
(c) an isolated second-order skyrmion solution, (d) an isolated
second-order antiskyrmion solution. Only metastable solutions of
interest corresponding to excitations of the FM ground state are
marked with an orange dot. The spin maps are zoomed in to show
the topological defects.

rotation of helicity. Bloch-type skyrmions [Fig. 1(b)], Néel-
type skyrmions [Fig. 1(c)], and all intermediate-helicity states
are therefore degenerate in energy [13].

III. RESULTS

A. Coexistence of skyrmion and antiskyrmion solutions

We introduce a weak DMI to the system in order to break
invariance with respect to the rotation of helicity, as well as the
degeneracy between skyrmions and antiskyrmions. We look
for a set of parameters that allows metastable skyrmion and
antiskyrmion solutions to coexist. To do so, we initialize the
system close to an (anti)skyrmion state and run an iterative
energy minimization procedure similar to the one described
in [30]. If an (anti)skyrmion solution exists, it is relaxed.
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We vary the perpendicular applied field b in [0, 0.4] and
the DMI coupling constant d in [0, 0.07]. We obtain the
diagrams in Fig. 2 for skyrmions [Fig. 2(a)] and antiskyrmions
[Fig. 2(b)].

At low field or high DMI, a spiral state is relaxed. Above
a critical applied field, the spin-spiral state becomes the fully
polarized ferromagnetic (FM) state via a second-order phase
transition [13]. From that state, metastable skyrmion solutions
can be stabilized. In the presence of a perpendicular easy-axis
anisotropy, the skyrmion lattice becomes thermodynamically
stable at intermediate applied field [13]. In this region, isolated
skyrmions are more favorable than the FM state. They are
metastable in the sense that they are local energy solutions
but not the ground state. At finite temperature, the isolated
skyrmion state is rapidly destroyed by the nucleation of many
topological defects in its vicinity. By contrast, the metastable
solutions we are interested in are isolated skyrmionic defects
as excitations of the FM ground state, which we mark as
orange dots on Fig. 2. Since the symmetry of the DMI favors
Néel skyrmions, degeneracies are lifted, and antiskyrmions
become progressively less stable than their skyrmion coun-
terparts as the DMI increases. They also relax diagonally
on the square lattice, such that their Bloch-type axes are
along the first-neighbor axes, which are the only ones that
are DMI coupled. This is due to the fact that one of the
Néel-type axes of the antiskyrmion exhibits the chirality op-
posite to the one favored by the DMI. This introduces frustra-
tion in the orientation of the antiskyrmion solutions, which
is not present in first-order, radially symmetric skyrmion
solutions.

Finally, Figs. 2(c) and 2(d) show the range of existence
of second-order skyrmion and antiskyrmion solutions, re-
spectively. They exist as stable solutions at low d in the
skyrmion lattice phase. By increasing the DMI at constant
applied field, a bound skyrmion pair is relaxed instead of
the second-order skyrmion, but the second-order antiskyrmion
solution persists. Metastable solutions are found within a
small window of the FM phase at sufficiently low field and
DMI. We find second-order skyrmion and antiskyrmions to
be quasidegenerate in energy whenever they both exist, with
small differences most likely caused by the underlying lattice.
However, the range of existence of the antiskyrmion appears
to be wider, as the first-order antiskyrmions are unfavored by
the DMI.

B. Paths to annihilation

Transition mechanisms correspond to minimum energy
paths (MEPs) on the 2N-dimensional energy surface. We
compute them via geodesics nudged elastic band (GNEB)
[21] calculations with a climbing image (CI-GNEB) [31]
scheme to precisely identify the first-order saddle point (SP)
on the path. Successive states of the system along the reaction
coordinate are referred to as images. For each mechanism, we
plot the spin maps at selected images and the corresponding
topological charge density as defined in Eq. (3) (Figs. 3, 5,
and 7). The total energy along the path is plotted in Figs. 4, 6,
and 8 in units of the isotropic exchange coupling constant
between first neighbors J1, as well as the total topological
charge at each image, as defined in Eq. (2).

FIG. 3. Spin maps (zoomed) and corresponding topological
charge density along the transition path for skyrmion annihilation.
The parameters are (a) (b, d ) = (0.2, 0.03) (metastable antiskyrmion
solutions exist), (b) (b, d ) = (0.3, 0.07) (close to the existence of
antiskyrmion solutions), and (c) (b, d ) = (0.7, 0.2) (antiskyrmion
solutions do not exist). The image index is given in the top left corner.

a. Skyrmion. The first set of parameters we examine is
(b, d ) = (0.2, 0.03). It is a region of parameter space where
both metastable skyrmion and antiskyrmion solutions ex-
ist. In this context, we observe an annihilation mechanism
which is different from the usually reported isotropic type
of collapse [Fig. 3(a)]. One half of the skyrmion unfolds,
and a half antiskyrmion, or antimeron, is nucleated in its
place. The injection of the opposite topological charge in
the system constitutes the first-order saddle point on the
transition path (Fig. 4). This state possesses four different
realizations, equivalent to rigid π/2 rotations of the whole
sample. The remaining meron and antimeron then naturally
annihilate. We found that the isotropic type of collapse also
exists in this system, but it involves a higher-order SP and
therefore constitutes a less probable route. The second set of
parameters is (b, d ) = (0.3, 0.07). In the space of parameters,
it is situated just above the limit at which antiskyrmion
solutions no longer exist. In this case, the skyrmion undergoes
a regular collapse [Fig. 3(b)] involving a first-order SP (image
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FIG. 4. For skyrmion annihilation at different values of the re-
duced applied field b and reduced DMI constant d , we show the
evolution along the transition path of (a) the internal energy barrier
in units of J1 and (b) the topological charge. The reaction coordinate
is normalized by the largest path length. The insets show the spin
configuration and the topological charge density at the SP.

6), but the core displays a weak asymmetry in a way that
is reminiscent of Fig. 3(a). Since we are close to the region
of the antiskyrmions’ metastability, this mechanism can be
considered intermediate between antimeron nucleation and
isotropic collapse. Finally, we select a region of parameter
space with high DMI, far from the metastability region of
antiskrymions: (b, d ) = (0.7, 0.2). As expected, we obtain a
perfectly isotropic collapse [Fig. 3(c)] without the injection of
an opposite topological charge. In all cases, the SP configu-
ration corresponds to an almost zero topological charge, and
the variation of the topological charge along the path is more
abrupt with increasing DMI.

b. Antiskyrmion. We revert back to the previous set of
parameters, (b, d ) = (0.2, 0.03), which allows metastable an-
tiskyrmions to coexist with skyrmions. We look at the path
to annihilation of an antiskyrmion, and we relax two different
mechanisms passing through a first-order SP [Figs. 5(b) and
5(a)]. In both cases, the annihilation process begins with the
rotation of the antiskyrmion, such that its Néel-type axes are
aligned along the first-neighbor axes (images 1–7). This con-
figuration constitutes an energy maximum as it is unfavored
by the DMI, and either the antiskyrmion can reach this state
as a full antiskyrmion with full integer topological charge [SP2

in Figs. 5(a) and 6(a)], or the spins may begin to unwind,
which leads to a decrease in the topological charge [SP1 in
Figs. 5(b) and 6(b)]. Past the SP, similarly to the annihilation

FIG. 5. Spin maps (zoomed) and corresponding topological
charge density along the transition path for antiskyrmion annihilation
with (b, d ) = (0.2, 0.03), where (a) shows the path over SP1 and
(b) shows the path over SP2. The image index is given in the top
left corner.

mechanism of its skyrmion counterpart, the topological charge
drops as a meron is nucleated and annihilates with the remain-
ing antimeron. SP1 exists in four possible realizations (π/2
rotations), while SP2 exists in two (π rotation). It is interesting

FIG. 6. Internal energy barrier in units of J1 (solid blue dots) and
topological charge Ns (open red squares) along the transition path
for an antiskyrmion collapse with (b, d ) = (0.2, 0.03) for (a) the
path over SP1 and (b) the path over SP2. The inset shows the spin
configuration and the topological charge density at the SP.
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FIG. 7. Spin maps (zoomed) and corresponding topological
charge density along the transition path for (a) the decay of a
second-order skyrmion into a first-order skyrmion with (b, d ) =
(0.14, 0.005) and (b) the division of a second-order skyrmion into
a bound skyrmion pair with (b, d ) = (0.1, 0.005). The image index
is given in the top left corner.

to note that the fact that the antiskyrmion is frustrated in its
orientation on the lattice suffices to distinguish between a
metastable solution and a SP. Here, the coupling to the spin
lattice entails that the antiskyrmion, as well as the second-
order skyrmion and all nonradially symmetric solutions, be-
haves as strongly correlated spin ice [32].

c. Second-order skyrmion. We select parameters that allow
both the first- and second-order skyrmions to be metastable:
(b, d ) = (0.14, 0.005). We initially set the final state of the
GNEB calculation to a Néel skyrmion, and we obtain the
mechanism in Fig. 7(a), with the corresponding energy profile
shown in Fig. 8(a). The second-order skyrmion first rotates
on the lattice and reaches the SP (image 3). The nucleation
of an antimeron along the Néel axis follows (image 4), and
the energy drops, accompanied by an abrupt change in the
topological charge. The antimeron subsequently annihilates
with part of the second-order skyrmion, leaving a first-order
Néel skyrmion in its place. Another route to annihilation for
the second-order skyrmion corresponds to its division into
a bound skyrmion pair, as shown in Fig. 7(b). The bound
skyrmion pair is a metastable solution since the interaction
potential of skyrmions in frustrated magnets is nonmonotonic
as a function of distance and is found in turn to be positive (re-
pulsive) and negative (binding) [13,16]. This mechanism does
not involve any significant change in the topological charge
of the total system [Fig. 8(b)], but instead a redistribution of
the topological charge density. Both of the above mechanisms
possess four realizations, corresponding to π/4 rigid rotations
of the sample. As for the fate of the skyrmion pair, the binding

FIG. 8. Internal energy barrier in units of J1 (solid blue dots) and
topological charge Ns (open red squares) along the transition path for
(a) the decay of a second-order skyrmion into a first-order skyrmion
with (b, d ) = (0.14, 0.005) and (b) the division of a second-order
skyrmion into a bound skyrmion pair with (b, d ) = (0.1, 0.005). The
inset shows the spin configuration and the topological charge density
at the SP.

potential is quite shallow compared to the activation barrier
for annihilation (from the results of [13], we can estimate the
unbinding barrier to be ∼10−4 J1). Therefore, the skyrmions
will, in most cases, separate before annihilating individually.

Similar processes were reported in [15] from dynamics
simulations, in which the second-order skyrmion division
was triggered by both a driving current at zero temperature
and thermal fluctuations at finite temperature. The finite-
temperature simulations also showed the decay of the second-
order skyrmion into a first-order skyrmion.

C. Langevin simulations

In order to confirm the previously calculated MEPs,
we perform direct atomistic Langevin simulations at low
temperature. Details of the method can be found in Ap-
pendix B. We obtain annihilation mechanisms for which
we show snapshots of the spin configuration in Fig. 9.
For the antiskyrmion at T = 80 K and (b, d ) = (0.2, 0.03)
[Fig. 9(a)], we observe the meron-nucleation type of annihila-
tion that we reported in Fig. 5. Since we have short lifetimes
within the nanosecond timescale, we can estimate the anti-
skyrmion’s stability directly from Langevin simulations. We
use the topological charge of the system to track the collapse
of the antiskyrmion. We record 390 collapses and obtain an
average lifetime τDL(80 K) = 0.49 ns, with a standard devia-
tion of the order of the lifetime, σ = 0.46 ns.

For the second-order skyrmion and antiskyrmion, as they
overall exhibit lower activation energies, we perform simula-
tions at T = 50 K and (b, d ) = (0.14, 0.005). The division
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FIG. 9. Langevin simulation snapshots (zoomed) of (a) the an-
nihilation of an antiskyrmion at T = 80 K, (b, d ) = (0.2, 0.03) and,
at T = 50 K, (b, d ) = (0.14, 0.005), (b) and (c) the division of a
second-order skyrmion into a bound skyrmion pair, (d) the decay
of a second-order skyrmion into a first-order skyrmion, and (e) the
division of a second-order antiskyrmion into a bound antiskyrmion
pair.

of the second-order skyrmion into a bound skyrmion pair
seems to occur along at least two different paths shown in
Figs. 9(b) and 9(c), in which the latter corresponds to the
MEP in Fig. 7(b). In Fig. 9(b), the division occurs through
excitation of one half of the second-order skyrmion, which
eventually leads to the separation of the two halves. On the
other hand, in Fig. 9(c), we witness a more symmetric kind of
division. For the same set of parameters, we also observe the
decay into a single skyrmion [Fig. 9(d), which corresponds
to the path in Fig. 7(a)]. Finally, in Fig. 9(e), we show the
division of a second-order antiskyrmion into a pair of first-
order antiskyrmions.

D. Annihilation rates

The rate of thermally activated processes with an inter-
nal energy barrier �E can be described by the Arrhenius
law, f (T ) = f0e−�E/kBT . We use a form of Langer’s theory
for the decay of metastable states [33] adapted to magnetic

spin systems [26,34,35] to compute individual rate prefactors
f0 for each of the mechanisms described previously, while
the CI-GNEB scheme directly gives us a precise value for
the activation energy. More details of the methods in this
paragraph are given in Ref. [26]. The results are gathered in
Table I. To account for all equivalent realizations of a given
mechanism (rigid rotations of the spin configurations at the
SP), the prefactor f0 is multiplied by a factor of 2 or 4 when
needed, in accordance with Sec. III B.

Based on these results, we can estimate the life-
time of the antiskyrmion calculated with Langer’s theory
(with the subscript TST, for transition state theory) and
compare it with the average lifetime previously obtained
from direct Langevin simulations. Assuming independent
processes, we have fTST(80 K) = f01e−β�E1 + f02e−β�E2 =
τ−1

TST(80 K) = 2.08 GHz and τTST(80 K) = 0.48 ns. Although
we are not completely within the scope of Langer’s theory
(β�E1 = 0.3, as opposed to the recommended β�E � 5
[34]), this shows excellent agreement with the result from
direct Langevin simulations, τDL(80 K) = 0.49 ns.

In the case of the second-order skyrmion’s decay into a
first-order skyrmion, we find a Goldstone mode at both the
metastable and transition states, which do not seem to clearly
correspond to a translational or rotational invariance; hence,
we cannot give a definite value for the attempt frequency in
this case.

IV. DISCUSSION AND CONCLUSION

A. Topological transitions: Taking a ball out of a net

Drawing inspiration from Ref. [36], we project images
along the MEPs onto the space of configurations: the unit
sphere (Fig. 10). Vertices correspond to the tip of the mag-
netic vectors with their origin in the center of the sphere,
and the edges represent the exchange coupling between first
neighbors. The ferromagnetic background (spins along +Z)
is found at the north pole of the sphere, while the core of a
skyrmion typically points along the south pole (along −Z).
The view is set just below the south pole, looking axially
towards the +Z direction. Annihilating a topological defect
to recover the uniformly magnetized state means bringing the
mesh back to the north pole by moving the vertices on the
sphere. This can be thought of as taking a ball (solid blue
sphere) out of a net (dark blue mesh) by deforming the net
[36]. Annihilations that occur via the injection of the opposite
topological charge [Figs. 10(a) and 10(c)] involve a rearrang-
ing of the spin mesh in a way that allows the entire net to
be removed along a single direction. By contrast, an isotropic
collapse consists of progressively spreading the mesh open
by an equal amount along all directions [Fig. 10(b)]. Finally,
a second-order skyrmion corresponds to a kind of double
net [Fig. 10(d)]. Its decay into a first-order skyrmion via
antimeron injection consists of the removal of one of the nets,
again along a given direction, so that only a single net remains.

B. Conclusion

In regions of parameter space for which both metastable
skyrmion and antiskyrmion solutions can be realized, the most
probable paths to annihilation, that is, the ones that go over
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TABLE I. Internal energy barrier �E and rate prefactor f0 for the annihilation of a skyrmion, an antiskyrmion, and a second-order skyrmion
with different values of the reduced applied field b and reduced DMI d .

Mechanism b (units of J1) d (units of J1) �E (units of J1) f0 (GHz)
Skyrmion

Antimeron nucleation 0.2 0.03 1.27 109.9 × 4
Isotropic collapse 0.3 0.07 1.62 3639.5
Isotropic collapse 0.7 0.2 1.80 1247.5

Antiskyrmion
Meron nucleation, SP1 0.2 0.03 0.022 1.4 × 2
Meron nucleation, SP2 0.2 0.03 0.43 10.6 × 4

Second-order skyrmion
Antimeron nucleation 0.14 0.005 0.0011
Skyrmion pair division 0.14 0.005 0.062

a first-order saddle point, seem to the paths involving the
injection of the opposite topological charge into the system
in the form of the nucleation of merons and antimerons. The
injection of the opposite charge usually happens just after
the saddle point configuration or at the saddle point in the
case of the skyrmion. The reason these peculiar paths exist in
the present system seems to be the interplay of the frustrated

FIG. 10. Mapping of the spin configurations along the MEP onto
the unit sphere. Vertices correspond to the tip of the magnetic vectors
with their origin in the center of the sphere, and the edges represent
the exchange coupling between first neighbors. The solid sphere
represents the “ball” that gets extracted from the “net.” The image
index is given in the top left corner. We show (a) skyrmion annihi-
lation via antimeron nucleation [Fig. 3(a)], (b) skyrmion annihila-
tion via isotropic collapse [Fig. 3(c)], (c) antiskyrmion annihilation
via meron nucleation [Fig. 5(a)], and (d) decay of a second-order
skyrmion into a first-order skyrmion [Fig. 7(a)].

exchange and the small sizes of the topological defects (small
number of magnetic sites involved in the spin textures) that
can be stabilized, which is directly linked to the period of the
spin spiral ground state determined by the exchange frustra-
tion. Alternatively, the division of the second-order skyrmion
into a bound skyrmion pair involves no change in the total
topological charge of the system, only a redistribution of the
charge density, and is also a valid path.

Overall, the skyrmionic solutions in this system are found
to be rather unstable, as they exhibit low internal energy
barriers, combined with many possible paths to collapse with
attempt frequencies in the range of several gigahertz. The
existence of many possible paths is a direct consequence of
the exchange frustration, which drastically complexifies the
energy landscape and is responsible for the emergence of
many (meta)stable and saddle point states, as well as many
possible paths connecting them. The low stability allowed
for a direct comparison of the average lifetime of the anti-
skyrmion at 80 K computed from direct Langevin simulations
with transition state theory calculations, and we obtained very
good agreement. Nevertheless, in this context, the direct use
of transition state theory to compile an overall reliable lifetime
for any given structure seems ill advised, as it is difficult to
account for all possible mechanisms. As for the low activation
energies and not particularly low attempt frequencies, we can
once more relate them to the skyrmions being very small and
possessing only a few internal modes [26,37].
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APPENDIX A: SIMULATION PARAMETERS

We use the following parameters for a two-dimensional
monolayer of 40 × 40 simulated sites: the isotropic exchange
constant between first neighbors is set to J1 = 1.6 × 10−20

J (∼100 meV) with lattice constant a = 1 nm and satura-
tion magnetization MS = 1.1 MA/m [27]. The gyromagnetic
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ratio is that of the free electron, γ = 1.76 × 1011 rad
s−1 T−1, and the dimensionless damping factor is α = 0.5 [27]
(intermediate- to high-damping regime of Langer’s theory).

APPENDIX B: LANGEVIN DYNAMICS

The dynamics of the magnetic spin system {mi}, i =
1, . . . , N , is governed by the set of coupled, dimensionless,
stochastic Landau-Lifshitz-Gilbert equations [38]:
dmi

dt̄
= 1

α
mi × [beff + bfl(t̄ )] − mi × {mi × [beff + bfl(t̄ )]}.

(B1)

All the quantities are in units of the isotropic exchange
coupling constant between first neighbors J1, such that in the
above expression, beff = 1

J1

∂E
∂mi

is the local reduced effective
field, and bfl is a stochastic fluctuating field in the form of
white noise, which accounts for fluctuations of the orientation

of mi caused by interactions with microscopic degrees of
freedom of the environment. It is assumed to be Gaussian
distributed with the following statistical properties, in agree-
ment with the fluctuation-dissipation theorem [38]:

〈bfl, j (t̄ )〉 = 0,

〈bfl, j (t̄ )bfl,k (t̄ ′)〉 = 2

(
α2

1 + α2

kBT

J1

)
δ jkδ(t̄ − t̄ ′), (B2)

where j, k are Cartesian indices, 〈·〉 denotes an average over
many realizations of the fluctuating field, δ(t̄ − t̄ ′) is the
Dirac distribution, and δ jk is the Kronecker symbol. The

reduced time t̄ is linked to physical time t via t = MSa3

αγ J1
t̄ ,

and we maintain dt̄ = 0.001. We use the stochastic Heun
scheme [38], which converges to the solution of (B1) when the
multiplicative noise is interpreted in the sense of Stratonovich.
Additionally, periodic boundary conditions are applied to
prevent the skyrmions from escaping through the boundaries.
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