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The channeling of spin waves with domain walls in ultrathin ferromagnetic films is demonstrated
theoretically and through micromagnetics simulations. It is shown that propagating excitations localized to
the wall, which appear in the frequency gap of bulk spin wave modes, can be guided in curved geometries
and propagate in close proximity to other channels. For Néel-type walls arising from a Dzyaloshinskii-
Moriya interaction, the channeling is strongly nonreciprocal and group velocities can exceed 1 km=s in the
long wavelength limit for certain propagation directions. The channeled modes represent an unusual
analogy of whispering gallery waves that are one dimensional and nonreciprocal with this interaction.
Moreover, a sufficiently strong Dzyaloshinskii-Moriya interaction can create a degeneracy of channeled
and propagating modes at a critical wave vector.
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Surfaces and boundaries are natural elements along
which propagating waves can become localized. A well-
known example concerns whispering gallery modes, which
represent a class of eigenmodes in which multiple reflec-
tions along a concave boundary lead to localized waves that
propagate freely along curved surfaces. Such channeled
modes appear in a wide variety of contexts, ranging from
the original observation by Lord Rayleigh of whispering
gallery sound waves in the rotunda of St. Paul’s Cathedral
[1] to guided light in nanometer scale dielectric resonators
based on zinc oxide needles [2]. In ferromagnetic systems,
spin waves can be localized along film surfaces due to the
dipolar interaction. Such excitations are known as Damon-
Eshbach modes and represent long wavelength spin waves
in the magnetostatic limit. We show here that spin wave
excitations localized to a domain wall can have unexpected
and previously unrecognized features. One consequence is
that we can view these as an unusual analogy to whispering
gallery modes with features not found in other systems due
to a breaking of chiral symmetry.
In the context of magnonics [3–7], where the control of

spinwaves is sought as a practical means of transmitting and
processing information (in the same vein as the control of
light in photonics), the capacity to propagate spin waves
along curved paths is essential for any form of circuit design
and is crucial for wave processing schemes that rely on spin
wave interference [8,9]. While Damon-Eshbach modes are
strongly localized for films above hundreds of nm in
thickness, they are less useful for guiding spin waves in
nanostructured materials and ultrathin films. Propagation
along curved wires has been demonstrated experimentally
with the assistance of current-induced Oersted fields [10]
that minimize scattering [11], but it remains unclear whether
such schemes are feasible in complex magnonic circuits.
Moreover, wave packet dispersion can be problematic for

maintaining coherence over distances of several microns,
since ferromagnetic spin waves are largely dispersive,
particularly at shorter wavelengths at which the exchange
interaction dominates. Finally, issues related to lithography
and nanofabrication, such as edge roughness or variability in
device dimensions, may become prohibitive for reproduc-
ible spin wave properties at sizes below 100 nm.
Here, we present a paradigm for spin wave propagation

that relies on magnetic domain walls as natural waveguides.
It is well established that spin waves propagating across a
domain wall experience a scattering potential, which for
static Bloch-type walls is reflectionless [12,13] and only
leads to phase shifts [8,14] but can result in momentum
transfer for dynamicwalls [15–17]. Phenomena related to the
latter have motivated studies examining how domain wall
motion can be effected by spin waves alone [18–22]. Instead,
we focus on a class of eigenmodes localized to the domain
wall center but which propagate freely in the direction
parallel to the wall as a result of a confining potential. We
show theoretically and through micromagnetics simulations
that such modes can be channeled in curved geometries with
no additional scattering, particularly for excitation frequen-
cies in the gap of bulk spin wave modes. These modes are
distinct from other known examples of whispering gallery
modes because they are one dimensional. Moreover, chiral
symmetry breaking due to a Dzyaloshinskii-Moriya inter-
action (DMI) leads to nonreciprocal propagation along Néel
walls, a feature unknown for whispering gallery modes.
The basic principle of the domain wall magnonic wave-

guide is illustrated in Fig. 1. Consider a thin rectangular
ferromagnetic wire with dimensions of 1000 × 250 × 1 nm
and a perpendicular magnetic anisotropy along the z axis
[23]. A domain wall separates two uniformly magnetized
“up” and “down” states with the wall axis along y, which is
perpendicular to the wire axis x. The spin waves considered

PRL 114, 247206 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
19 JUNE 2015

0031-9007=15=114(24)=247206(5) 247206-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.114.247206
http://dx.doi.org/10.1103/PhysRevLett.114.247206
http://dx.doi.org/10.1103/PhysRevLett.114.247206
http://dx.doi.org/10.1103/PhysRevLett.114.247206


are associated with localized domain wall eigenmodes that
propagate along the x direction, parallel to the domain wall.
In the micromagnetics simulations used [23,26], these
modes are driven by a microwave antenna that is modeled
as a line source of a sinusoidal excitation field hrf .
In the presence of an isotropic exchange and dipole-

dipole interactions, the Bloch-type domain wall minimizes
the volume dipolar interaction and it is characterized by
moments that rotate in a plane (xz) perpendicular to the wall
direction (y). For this wall type, there exists a family of spin
wave eigenmodes,

ψkðx; y; tÞ ¼ exp ½iðΩB
k t − kxxÞ�sechðy=λÞ; ð1Þ

which are localized in the direction perpendicular to the
domain wall (y) on a length scale λ but propagate as plane
waves parallel to the domain wall (x) [12]. Here, λ ¼ffiffiffiffiffiffiffiffiffiffiffi
A=K0

p
represents the characteristic wall width parameter

where A is the exchange, K0 ¼ Ku − μ0M2
s=2 is the

effective perpendicular anisotropy constant, and Ms is
the saturation magnetization. These modes are exchange-
dominated spin waves whose dispersion relation is

ΩB
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωkðωk þ ω⊥Þ

p
; ð2Þ

where ωk ¼ 2γAk2x=Ms is the quadratic exchange part,
ω⊥ ¼ 2γK⊥=Ms, and K⊥ ¼ μ0NyM2

s=2 is a transverse
anisotropy that represents the dipolar interaction due to
volume charges at the domain wall center, with Ny
representing an effective demagnetization constant along
the wall axis y. For ultrathin films Ny ≈ d=ðdþ πλÞ, where
d is the film thickness [27]. These modes are gapless
because the effective field associated with the
perpendicular anisotropy cancels out at the wall center.
In Fig. 1(b), the dispersion relation Eq. (2) is shown in
comparison with the usual bulk spin wave modes for the
uniformly magnetized state,

Ωu
k ¼ ωk þ

2γK0

Ms
; ð3Þ

where we have assumed A ¼ 15 pJ=m, Ku ¼ 1 MJ=m3,
Ms ¼ 1 MA=m, and d ¼ 1 nm. For a microwave field
excitation in the frequency gap of the bulk modes Ωu

k ,
which is determined by 2γK0=Ms, one observes that only
the localized Winter modes ΩB

k are excited and are effec-
tively channeled along the domain wall center [Fig. 1(c),
excitation at 10 GHz], which acts as a local potential well
for the spin waves. The wavelength at 10 GHz is approx-
imately 60 nm, which means there is subwavelength
confinement in both the film thickness (1 nm) and across
the width of the domain wall (πλ ≈ 18 nm); such localized
modes therefore represent true one-dimensional propagation
of spin waves. When the microwave field is applied in the
frequency band of the bulk modes, the channeling phe-
nomenon is preserved whereby the localized modes can be
seen to propagate with a higher wave vector than the bulk
modes [Fig. 1(c), excitation at 50 GHz].
For ultrathin ferromagnetic films on substrateswith a large

spin-orbit coupling, an interfacial DMI [28–31] can appear
that favors a Néel-type domain wall [32,33]. An example of
such a material system is the asymmetric Pt=Co=Al2O3

multilayer, where the ultrathin Co layer harbors left-handed
Néel walls at equilibrium [34] and possesses a strong
interfacial DMI [35] that is consistent with the D values
used here. Themoments in thiswall type rotate in a plane (yz)
parallel to thewall direction (y), which leads to an increase in
the volume dipolar interaction but which is subsequently
compensated by the DMI above a critical value, D > Dc
[33]. In this case, the inclusion of the DMI leads to a
hybridization of the Winter modes [36]. Nevertheless, an
expression for the channeledmode frequencies for Néel-type
walls can be found from perturbation theory by using
the Winter modes in Eq. (1) as a scattering basis, which
involves computing frequency shifts due to terms such as
hψkjsechðy=λÞjψki and hψkjsechðy=λÞ∂xjψki [36]. The
resulting eigenfrequencies are
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FIG. 1 (color online). A magnonic waveguide based on a
domain wall (DW). (a) Geometry for spin wave propagation
along the center of the wall, where a radio frequency antenna
generating an alternating field hrf excites spin waves that
propagate along the (x). (b),(d) Dispersion relation for channeled
Bloch [(b), red curve], ΩB

k , and Néel [(d), blue curve], ΩN
k ,

domain wall spin wave modes in comparison with bulk spin
waves (black curve),Ωu

k . For the Néel wall case,D ¼ 1.5 mJ=m2.
(c),(e) Simulation results of propagating modes for excitation
field frequencies in the bulk (50 GHz) and in the gap (10 GHz) for
Bloch (c) and Néel (e) walls. These driving frequencies are shown
as dashed lines in (b),(d).
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ΩN�
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωk

�
ωk − ω⊥ þ ωD;k

kxλ

�s
� ωD;k; ð4Þ

whereωD;k ¼ πγDkx=2Ms. In addition to an ellipticity in the
precession, the DMI results in a linear wave vector depend-
ence for the mode frequency, which is consistent with
behavior in other geometries [36–39]. However, this linear
kx dependence does not lead to a simple shift in the quadratic
dispersion relation as a result of the ellipticity. Instead,
dispersion relation becomes markedly asymmetric with
respect to kx ¼ 0 [Fig. 1(d)], where a quasilinear variation
is seen for kx > 0 while a strongly quadratic variation is
preserved for kx < 0. This asymmetry leads to pronounced
differences in the left- and right-propagating wave vectors,
which can be seen for microwave field excitations in the
frequencygapand in the frequencybandof the bulk spinwave
modes [Fig. 1(e)]. The channeling properties of the Néel-type
wall are preserved even in cases where the localized and
propagating mode frequencies are closely spaced, which can
be seen for the kx > 0 propagation at around 50 GHz in
Fig. 1(e). Note that in the limit of k → 0 andω⊥ → 0, Eq. (4)
predicts an instability in the domainwall ground stateΩN−

k ¼
0 for a critical value of the DMI,Dc2 ¼ 4

ffiffiffiffiffiffiffiffiffi
AK0

p
=π, which is

consistent with previous work [32,33]. Our simulations
indeed show that straight domain walls become unstable
for D > Dc2. It is interesting to note that the energies of the
channeled and bulk mode become degenerate for a certain
valueofkx for finiteD.Thisvalueofkx representsan inversion
of the gap separating the localized from the bulk states.
To verify the perturbation theory and to explore simulta-

neous propagation along multiple channels, the spin waves
were studied using micromagnetics simulations for a three-
domain structure comprising two parallel domainwalls [23].
The simulated dispersion relations for kx > 0 propagation in
this configuration are presented in Fig. 2. Both Bloch
(D ¼ 0) and Néel-type walls (D ¼ 3 mJ=m2) were consid-
ered. For all channeled domain wall and bulk modes, the
analytical theory gives a good account of the simulated
dispersion relations, where small discrepancies arise due to
limited wave vector resolution resulting from the finite size
of the simulation grid. For the Néel wall case, we observe
two frequency branches since the propagation in the two
domain wall channels occurs for different relative chiralities
of the domain wall. No discernible interference is observed
between the two channels, which indicates that the wall
modes can propagate with distinct wave vectors along the
different channels with minimal “crosstalk.” An interesting
property of these Néel wall branches is that the difference in
their frequencies, ΔΩN

k ¼ ΩNþ
k − ΩN−

k ¼ 2ωD;k, is simply
proportional to D. Therefore, a simultaneous measurement
of these two branches allows the DMI strength to be probed.
Spin waves guided using domain walls in curved geom-

etries are shown in Fig. 3. A 200 nmwide curved trackwith a
90° bend is considered, with a radius of curvature of
approximately 1600 nm for the outer edge [23]. The

magnetic state of the track comprises a three-domain
structure, where the domainwalls run approximately parallel
to the track edges. In order to stabilize this particular domain
state, a DMI of D ¼ 1 mJ=m2 was used to ensure that the
domain walls are not expelled from the track as a result of
dipolar interactions. A microwave antenna is placed at one
end of the track, which excites spin waves that propagate in a
counterclockwise direction along the track. Figure 3 illus-
trates the propagation for an excitation at 5 GHz, which is in
the gap of the bulk modes. A clear channeling effect can be
observed, where the spin waves can be seen to propagate
along the curved trackwithout any apparent scattering or loss
of coherence (in contrast to bulk modes, as shown in Fig. S2
of Ref. [23]), and again there is no perceptible interference
between the two domain wall channels. The nonreciprocal
effect due to the different relative chiralities seen for the
propagating modes is also preserved, which suggests that
closely spaced domain walls act as independent channels for
excitations in the frequency gap of the bulk modes. While
difficult to realize in practice, this geometry serves to
illustrate the salient features of domain wall channeling
along curved paths. Note that the DMI is not necessary for
propagation along curved walls; some examples for Bloch
walls with D ¼ 0 can be found elsewhere [23].
The dispersion relation for the Néel wall modes has

interesting consequences for wave packet propagation. In
the ultrathin film geometry in which a strong perpendicular
anisotropy is present, the bulk spin wave spectrum is mainly
exchange dominated and exhibits a quadratic dispersion
relation, as illustrated in Figs. 1(b) and 2. As such, wave
packets comprising bulk spin waves in the long wavelength
limit, k → 0, exhibit strong dispersion and a vanishing
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FIG. 2 (color online). Simulated dispersion relation for chan-
neled and bulk spin waves. Ωu

k indicate bulk modes. The
channeled modes for Bloch-type (ΩB

k ) and Néel-type (ΩN�
k )

walls are computed, where D ¼ 3 mJ=m2 for the latter and the
sign indicates propagation relative to the wall chirality. The points
represent simulated values and lines are based on Eqs. (2), (3),
and (4). The inset shows the three-domain geometry with two
parallel domain wall channels.
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group velocity, vg, since vug ≡ ∂kΩu
k ¼ 4γAk=Ms is linear in

k and vanishes as k → 0. For Bloch-type walls, vg for
the channeled mode remains finite in this limit as a result
of the weak ellipticity of the precession, with a value of
vBg0 ≡ vBg ðk ¼ 0Þ ¼ γ

ffiffiffiffiffiffiffiffiffiffiffiffi
2AK⊥

p
=Ms, which is approximately

76 m=s with the numerical parameters considered here. For
Néel-type walls, the channeled spin wave modes in the long
wavelength limit possess a group velocity characterized by

vN�
g0 ¼ γ

Ms

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A

�
πD
λ

− 2K⊥
�s
� πD

2

1
CA; ð5Þ

which is found from Eq. (4). A striking feature is that the
group velocity of the two branches can have large
finite values even in the long wavelength limit, but
which are strongly dependent on the propagation direction
as shown in Fig. 4. The difference in vN�

g0 between the two
branches is simply proportional to D, but the functional
form of vN�

g0 ðDÞ itself is nontrivial and is shown in the
inset of Fig. 4(a). It is interesting to note that the group
velocity for the ΩN−

k branch tends towards zero as D
increases, which is mirrored by an increasing group velocity
for the ΩNþ

k mode. For a moderate value D ¼ 1.5 mJ=m2,
vNþ
g0 ≈ 1000 m=s, which might be a useful characteristic

for information technologies.
An illustration of nonreciprocal wave packet propagation

is shown in Fig. 4(b). The geometry shown in Fig. 1 is used.
The wave packets are generated with a field pulse at x ¼ 0

that comprises a sine wave oscillation, hp ¼ hp0 sinð2πνptÞ
with hp0 ¼ 100 mT and νp ¼ 7.5 GHz, over one period.
This form allows better wave vector selection in reciprocal
space, since the Fourier transform of this function is peaked
at a finite value of kx. The wave packet is generated in a
straight Néel-typewall [cf. Fig. 1(e)] with a large value of the
DMI, D ¼ 3 mJ=m2, in order to highlight the nonreciproc-
ity. The temporal evolution of the δmz component of the
wave packet is shown for three instants after the application
of the pulsed field. Propagation towards the −x direction
involves the ΩN−

k branch and exhibits strong dispersion,
where thewave packet spreads out over amicron after 1.5 ns.
On the other hand, the propagation along the þx direction
(ΩNþ

k ) exhibits a much weaker dispersion where the wave
packet can be observed to retain its shape after propagating
over 2 μm. The decrease in amplitude for the ΩNþ

k packet is
related toGilbert damping (α ¼ 0.01), rather thandispersion.
Thewave packet velocity forΩNþ

k computed from simulation
is approximately 1550 m=s, which is close to the value of
≈1700 m=s expected from the analytical theory. Good
agreement for the velocity is also found for theΩN−

k branch,
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FIG. 3 (color online). (a) Spin wave channeling around a
curved track through two Néel-type domain walls
(D ¼ 1 mJ=m2). Fluctuations in the mz magnetization compo-
nent are shown as a color code for a microwave excitation
frequency of 5 GHz, where the simulated microwave antenna is
situated at the top of the track. The area of the simulated region is
1600 nm × 1600 nm. The width of the wire is 200 nm and the
thickness is 1 nm. (b) Equilibrium configuration of the curved
track comprising three domains. The inset shows a schematic of
the magnetization profile in a cross section at the top of the track.
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FIG. 4 (color online). (a) Group velocity for the channeled and
bulk spin waves. Ωu
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k ) and Néel-type (ΩN�
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are computed, where the sign for the latter indicates propagation
relative to the wall chirality. The inset shows the k → 0 limit of
the group velocity for the two Néel wall modes as a function of
the Dzyaloshinskii-Moriya constant, D. (b) Wave packets in a
Néel wall channel (D ¼ 3 mJ=m2) at three instants after gen-
eration by a sinusoidal pulse with νp ¼ 7.5 GHz.
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where simulations give a value of ≈750 m=s while the
analytical theory predicts a group velocity of ≈775 m=s.
Domain wall channeling addresses some of the issues

highlighted in the introduction for magnonics applications.
Because the spin structure of domain walls is primarily
governed by intrinsic magnetic properties, they are less
sensitive to issues related to lithography or nanofabrication
such as edge roughness or sample-to-sample reproducibility.
Channeling along curved walls might also be useful for
modulating propagation lengths for applications involving
interference, but it would at the very least relax constraints
on how straight spin wave conduits need to be for
magnonic circuits based on such waveguides to function.
Reconfigurablewaveguide schemes could also be envisaged,
where the number, spacing, and shape of domain wall arrays
could be modified with applied fields or spin-polarized
currents. On a more fundamental level, the crossing of the
localized and bulk mode branches for finiteD suggests there
are severe consequences on dissipation via spin wave
interactions, and consequently their lifetimes, near this
critical wave vector. We also suspect that the nonreciprocity
has intriguing consequences on the flow of angular momen-
tum, yet another aspect that may be distinctly different from
whispering gallery modes in optical fields.
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