
CHAPTER FOUR

Spin-Torque Oscillators
Joo-Von Kim!,†,1
!Institut d’Electronique Fondamentale, Université Paris-Sud, Orsay, France
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1. INTRODUCTION

The advent of magnetic nanostructures has led to the appearance of

physical phenomena not present in bulk materials. One prominent example

is spin-transfer torques, which arise from spin-dependent transport processes

in transition metal ferromagnets. Because electron transport is inherently

spin-polarized in these materials, resulting from an exchange interaction

between the conduction electron spins and local moments, torques appear

when the spin current polarization and magnetization become noncollinear.

Torques are observed in single thin films in regions in which large spatial

gradients in the magnetization occur, such as in domain walls [1,2] and vor-

tices, and in magnetic multilayers where layer magnetizations are tilted from

one another [3,4]. Spin-transfer torques can initiate a number of physical

processes without the need for applied magnetic fields, such as magnetiza-

tion reversal in nanopillar structures [5], domain wall propagation along

magnetic wires [6,7], and vortex displacement [8] and gyration [9] in mag-

netic dots. The magnitude of spin-transfer torques scales with the applied

current density, which is why appreciable effects onmagnetization dynamics

are seen only for structures in the submicron limit.

Spin-transfer torques represent dissipative processes that cannot be

described by or derived from a magnetic potential. The essential feature

involves the transfer of spin angular momentum from the spin-polarized

current to the local magnetization. Depending on the physical geometry

and micromagnetic state, spin torques can either contribute to magnetic

relaxation processes that are inherent in magnetization dynamics, leading

to stronger damping, or compensate for these processes in such a way that

the overall damping is reduced. Indeed, one of the first experimental dem-

onstrations of spin-transfer torques involved the amplification of thermal

spin waves in multilayer structures under dc currents [10–12]. Under

sufficiently high currents, magnetic damping can become entirely compen-

sated by spin torques, leading to either instabilities in the magnetic state or

self-sustained oscillations of the magnetization [13,14]. The latter occurs for

spin waves, large-angle (quasi-)uniformmagnetization precession, and mag-

netic vortices (whose motion is intrinsically gyrotropic).

For self-sustained oscillations involving magnetoresistive structures such

as spin valves and magnetic tunnel junctions, the time-varying magnetiza-

tion (of the free magnetic layer, for example) translates into a high-frequency

electrical signal by virtue of the giant- or tunnel-magnetoresistance effects
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(Fig. 4.1) [13,14]. As the underlying dynamics is drivenbydc currents only, the

experimental realization of such current-driven magnetization oscillations has

inspired many proposals for electrical oscillators in the gigahertz range. These

systems are referred to as spin-torque oscillators. From a fundamental perspective,

these systems are of interest because the oscillatory behavior is a result of the

interplay between strongly nonlinear magnetization processes and spin-

dependent transport through magnetic heterostructures where the strong

nonlinearity can lead to large variations in the oscillation frequency with

applied currents. From a technological perspective, such systems are enticing

because of the prospect of constructing frequency-tunable oscillators on the

nanoscale, with potential applications in mobile telecommunications, for

example,where several frequency bands could behandled by a single oscillator.

The aim of this chapter is to provide an introduction to the theoretical

basis of spin-torque oscillators, with important points being supplemented

by key experimental results. Emphasis is given to describing current-driven

magnetization processes relevant to transition metal ferromagnets, such as

iron, cobalt, nickel, and their alloys, as these material systems are the subject

of the vast majority of experimental studies to date and show the greatest

promise for future applications in spintronics. The chapter is intended to

be more of a tutorial for readers unfamiliar with the physical aspects of

the topic rather than an exhaustive review of published experimental and

theoretical results. The chapter is organized as follows. In Section 2, a brief

introduction to key concepts is given, which includes basic oscillator theory,

magnetization dynamics in the presence of spin torques, and the different

formulationsused to construct theories for spin-torqueoscillators. In Section 3,

a description of oscillators based on linear and nonlinear spin-wave modes is

given. In Section 4, the oscillator model is extended to include thermal noise,

which leads to a stochastic theory that is relevant to describing room temper-

ature experimental spectra. The focus shifts to oscillating magnetic vortices in

Section 5, where a description of dynamics in confined and extended

geometries is presented. A summary of other nonlinear phenomena is given

in Section 6 and some final remarks are given in Section 7.

2. SELF-SUSTAINED OSCILLATIONS AND SPIN TORQUES
2.1. Basic notions of self-sustained oscillations

Self-sustained oscillations occur in a system in which a periodic signal is

generated without the stimulus of an external periodic force. Such systems

are ubiquitous in nature. Examples include the laser, the flashing of fireflies,
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Figure 4.1 Experimental power spectra of voltage oscillations in spin-torque oscillators.
(a) Current-driven dynamics in a pseudo spin-valve nanopillar under an applied field
m0H¼0.2 T at several applied currents. The inset shows the power spectrum
m0H¼0.26 T and I¼2.2 mA, for which both the first and second harmonics are visible.
(b) Current-driven dynamics in a magnetic nanocontact under an applied field of
m0H¼0.1 T at several applied currents. The inset shows the current dependence of
the mode frequency. (a) After Fig. lc of Ref. [13] (© Nature Publishing Group). (b) After
Fig. 1b of Ref. [14] (© American Physical Society).
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the beating of a heart, and the firing of neurons. Three essential components

underpin all self-oscillatory systems. The first is a resonant component,

which determines the frequency of oscillation. The second is a dissipative

component, which relates to the energy lost from the system toward its

environment. This is a feature of any real physical system. The third is an

“active” component, which represents a source of energy that compensates

for losses due to the dissipative part.

The central feature of all self-oscillatory systems is the existence of a stable

limit cycle in their phase space. A limit cycle represents an isolated closed

trajectory, where motion along the cycle is periodic and neighboring trajec-

tories spiral toward (and are attracted by) this cycle. Limit cycles are inherently

nonlinear; while closed (periodic) orbits can occur in a linear conservative

system, these orbits are not isolated as the amplitudeof oscillation is determined

purely by the initial conditions (Fig. 4.2a). For example, a slight perturbation to

a linear system will result in a change in the oscillation amplitude that persists,

while for a nonlinear system, such perturbations eventually die out as the sys-

tem relaxes back toward the stable limit cycle (Fig. 4.2b). As such, the limit

cycle is related to the inherent nonlinear properties of the dynamical system.

To see how a limit cycle appears, let us consider the following dynamical

system,

dr

dt
¼ m# r2
! "

r,
dy
dt

¼o; ½4:1%

where r and y represent polar variables in the xy plane, and m and o are

parameters of the system. The phase space of this system is spanned by the

(a) (b) (c)
y

x

t

t

y

x

x

Figure 4.2 Illustration of periodic orbits; (a) Linear oscillatory systemwith an infinite fam-
ily of periodic orbits. (b) Nonlinear self-oscillatory system with a stable limit cycle (unit
circle). Initial states inside or outside the unit circle are attracted toward the limit cycle,
as indicated by the flows in the xy phase space. The origin is an unstable fixed point.
(c) Transient behavior for initial conditions inside (top) and outside (bottom) the limit
cycle. The system settles into steady-state oscillations after the transient phase.
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variables (r,y) (or, equivalently (x,y) in Cartesian coordinates). In this example,

the radial and angular variables are uncoupled, which allows the dynamics in

each of these variables to be considered separately. In physical terms, the radial

equation describes a nonlinear damping in the amplitude r, where the sign of m
controls whether the damping is positive or negative at small r, while the

nonlinear term always contributes to negative damping (losses). The quantity

(m# r2) corresponds to the balance between intrinsic relaxation and energy

flow into a system via an active element. In this example, the resonant part

is described simply by the constant angular frequency o.
For m<0, the system possesses only one stable fixed point at the origin,

r! ¼ 0. The trajectories in this case comprise spiraling flows toward the

origin, as shown in Fig. 4.3a, with the sense of rotation depending on the

sign of o. As the parameter is varied through m¼0 and becomes positive,

m>0, the origin loses its stability and a stable limit cycle appears at

r! ¼ ffiffiffi
m

p
(Fig. 4.3b). The process by which this limit cycle appears is referred

to as a supercritical Hopf bifurcation [15]. For m>0, all trajectories in the

phase space of the system, with the exception of the point r! ¼ 0, converge

toward the circle r! ¼ ffiffiffi
m

p
at a constant angular velocity of o. This gives rise

to the spiraling trajectories shown in Figs. 4.2b and 4.3b. Any perturbation

away from the limit cycle is always restored back toward this cycle as a result

of the nonlinear term (m# r2), which is essential for the existence of a limit

cycle, in contrast to the free oscillations depicted in Fig. 4.2a. It is straight-

forward to see that the time evolution of either the x or y variables on the

limit cycle is described by a sinusoidal oscillation, as shown in Fig. 4.2c.

It is useful and important to make the distinction between self-oscillatory

and resonant systems, both of which exhibit oscillations in the steady state. In

(a) (b)

Figure 4.3 Illustration of a supercritical Hopf bifurcation. (a) m<0, showing damped
oscillations where all trajectories in phase space spiral toward the origin. (b) m>0, where
all trajectories are attracted to the limit cycle.
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a resonant system, the order parameter is driven into a steady-state oscillation

in response to a periodic external force. The amplitude of this response is

frequency-dependent and is largest when some resonance condition is

met. More importantly, the phase of the oscillation is exactly defined by

how the system responds to the external force, in particular, on the

frequency of this periodic force, that is, it is governed by a (complex)

susceptibility. In contrast, the oscillation amplitude in a self-oscillatory

system is stable but its phase is arbitrary. This is an important distinction

and allows for rich nonlinear phenomena such as phase-locking and

synchronization to occur in self-sustained oscillators. These topics are briefly

discussed toward the end of the chapter.

2.2. Magnetization precession and the torque equation
The main focus of this chapter is on how self-sustained oscillations appear in

the magnetization dynamics of transition metal ferromagnets. These materials

can be classified as strong ferromagnets as the Curie temperatures of the bulk

state are well above room temperature (i.e., 1043 K for Fe, 1388 K for Co,

and 627 K for Ni). As a result of the strong exchange interaction, the micro-

magnetic approach represents a good approximation for describing magneti-

zation processes in these materials at room temperature. This approach

involves the assumption that the magnetic order can be described by a

continuous field M¼Msm̂ rð Þ, whose norm is always conserved ( m̂k k¼ 1)

and has the magnitude of the saturation magnetizationMs of the material [16].

The time evolution of the magnetization vector in the micromagnetic

approximation is described by the torque equation

dm̂

dt
¼#g0m̂(Heff þ

X

i

Ti,NC; ½4:2%

where g0¼|g|m0 is the gyromagnetic constant and g¼ gmB/ℏ. The first term
on the right-hand side describes magnetization precession about its local

effective field Heff,

Heff rð Þ¼# 1

m0

@E rð Þ
@M rð Þ ; ½4:3%

where E is the magnetic energy per unit volume and represents the sum over

all magnetic interactions present. The precession term represents the reso-

nant part of the spin-torque oscillator, where the frequency of precession

is governed by the relevant energy terms in the effective field. The second
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term on the right-hand side describes a summation over nonconservative

torques Ti,nc that cannot be derived from a potential. The relevant non-

conservative torques for spin-torque oscillators are described in detail further

on in this section.

For materials of technological interest, the important contributions to

the magnetic energy are the Zeeman, exchange, and dipole–dipole interac-

tions. The Zeeman term describes the interaction of magnetization with an

external applied magnetic field H0,

EZ rð Þ¼#m0Msm̂ rð Þ*H0 rð Þ; ½4:4%

which originates in the lifting of the degeneracy between spin-up and spin-

down electrons as a result of the magnetic field. The exchange interaction

represents the coupling between neighboring local moments that leads to a

spontaneous magnetic order. In the continuum limit, the isotropic form of

the interaction can be written as

Eex rð Þ¼A
@mi rð Þ
@xj

@mi rð Þ
@xj

; ½4:5%

wheremi¼{mx,my,mz}, xi¼{x, y, z}, and summation of repeated indices is

assumed. The dipole–dipole interaction is a long-ranged interaction that

couples together all the local moments in the system. It is useful to cast this

energy in terms of an effective dipolar field Hd,

Ed rð Þ¼#1

2
m0Msm̂ rð Þ*Hd rð Þ: ½4:6%

The dipolar field is derived from a magnetostatic potential Fm,

Hd rð Þ¼#rFm rð Þ; ½4:7%

which comprises contributions from surface (rs) and volume (rv) magnetic

charges,

Fm rð Þ¼Ms

4p

ð
dV 0 rv r0ð Þ

r# r0k k
þ
ð
dS0

rs r0ð Þ
r# r0k k

% &
; ½4:8%

where the integrals are taken over the volume and the surface of the material,

respectively, and the magnetic charge densities are defined as

rv rð Þ¼#r*m̂ rð Þ; rs rð Þ¼#m̂ rð Þ*n̂ rð Þ; ½4:9%

with n̂ rð Þ being a unit vector representing the outward normal to the sur-

face. The nonlocal character of the magnetostatic potential reflects the long-

ranged character of the dipole–dipole interaction. While a direct evaluation
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of this interaction is not tractable analytically and is computationally inten-

sive, useful approximations can be obtained for special cases. A convenient

approach involves the use of demagnetizing factors N ij,

Ed rð Þ¼ 1

2
m0M

2
s mi rð ÞN ij rð Þmj rð Þ; ½4:10%

which reduces the dipole–dipole energy to a local interaction [16].N ij rep-

resents a dimensionless 3(3 matrix whose elements are determined by the

geometry of the magnetic material. For an infinite thin film, for example, the

only nonvanishing component isN zz ¼ 1 (where z represents the direction

normal to the film plane), which reduces the dipolar interaction to a hard-

axis anisotropy of the form

Ed rð Þ¼ 1

2
m0M

2
s N zzm

2
z rð Þ: ½4:11%

In general, the finite size of a nanoelement gives rise to a shape anisotropy of

this form.

2.3. Magnetic relaxation
A significant contribution to the nonconservative torques in Eq. (4.2) arises

from energy losses due to magnetic relaxation or damping. This represents

the ensemble of dissipative processes that transfers energy out of the magnetic

system toward other heat baths with which it is in contact. For example, the

interaction between magnetization with phonons and conduction electrons

contributes to such relaxation processes.

Damping allows a micromagnetic configuration to reach an equilibrium

state in which the magnetization vector is oriented along its local effective

fields. In micromagnetics, such relaxation processes can be described with a

phenomenological damping term in the torque equation (Eq. 4.2). Gilbert

proposed a term of the form [17,18]

TG¼ am̂(dm̂

dt
; ½4:12%

where a is a dimensionless damping constant. This term represents viscous

damping and is analogous to friction in mechanical systems in which the

magnitude of the frictional force acting on a body is proportional to its

velocity. A geometrical interpretation of this damping term is more easily

seen by rewriting it in terms of a vector product with the effective field.

Consider the full equation of motion for the damped magnetization

dynamics,
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dm̂

dt
¼#g0m̂(Heff þam̂(dm̂

dt
: ½4:13%

By applying m̂( to both sides of Eq. (4.13),

m̂(dm̂

dt
¼#g0m̂( m̂(Heffð Þ#a

dm̂

dt
; ½4:14%

and substituting the right-hand side of this equation for the damping term in

Eq. (4.13), the equation of motion becomes

dm̂

dt
¼# g0

1þa2
m̂(Heff #

ag0
1þa2

m̂( m̂(Heffð Þ: ½4:15%

As the illustration in Fig. 4.4 shows, the damping torque acts in a direction

perpendicular to the precessional motion, leading the magnetization to spiral

toward the direction of the effective field until it becomes aligned with this

field. When this occurs, all torques acting on the magnetization vector

vanish.

It should be noted that the damping term in Eq. (4.15) is mathematically

equivalent to the phenomenological form originally proposed by Landau

and Lifshitz [19]:

TLL¼#g0lm̂( m̂(Heffð Þ; ½4:16%

where l is another dimensionless damping constant. While the Gilbert and

Landau–Lifshitz formulations share the same mathematical structure, the

physical consequences are different in the limit of large damping. In the

Landau–Lifshitz formulation, the damping constant acts only on the torque

perpendicular to the precessional motion, with no theoretical upper limit on

Heff

M

–M!Heff

–M!(M!Heff)

(a) (b)

Figure 4.4 Illustration of damped precessional magnetization dynamics. (a) Damped
spiraling trajectory of the magnetization M about its effective field Heff. (b) Top view
of the dynamics, with the directions of the precessional and damping torques drawn.
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the magnitude of this torque. The Gilbert form of damping, on the other

hand, acts on the entire magnetization dynamics, which can be seen from

the presence of a in both the precessional and damping terms in the equa-

tions of motion. In practice, the distinction between the two is academic, as

the Gilbert damping constant of technologically relevant materials, such as

YIG or permalloy, is on the order of 10#3–10#2. As such, the term a2+1 in

the denominator of Eq. (4.15) can be neglected, which makes both the

Landau–Lifshitz and Gilbert formulations physically equivalent. However,

it has been suggested that the Landau–Lifshitz formulation may be more

relevant for specific cases [20], but there is a general preference toward using

the Gilbert form because of its connection to viscous damping. For example,

nonlinear corrections to the Gilbert damping can be made naturally by using

a power-series expansion to the damping constant [21],

a¼ a0þ c1
dm̂

dt

''''

''''
2

þ . . . ½4:17%

which is motivated by the identification of dm̂=dtk k2 as the square of a gen-
eralized velocity for the magnetic system.

2.4. Spin-transfer torques
Electron currents in transitionmetal ferromagnets are naturally spin-polarized.

Themagnetization defines a natural quantization axis for the conduction elec-

tron spins and the asymmetry between spin-up and spin-down transport

channels results from a difference in mobility between the two. The origin

of this asymmetry is in the exchange interaction that leads to the spontaneous

ferromagnetic state. This exchange interaction leads to a splitting of the

conduction electron bands, which results in different parts of the band struc-

ture being present at the Fermi energy. The segments of the spin-up and

spin-down band structures that intersect the Fermi level generally have differ-

ent densities of states, which results in different scattering probabilities, and

therefore different resistivities, for the two spin channels.

A useful picture for understanding the effects of spin-polarized transport

on magnetization dynamics in transition metals is the sd model. The elec-

tronic states at the Fermi level are divided into two distinct groups:

delocalized 4s electrons that are responsible for electrical conduction, and

localized 3d electrons that are responsible for the magnetic order. These

two species of electrons interact via an exchange interaction,

Esd ¼#J sdm̂ rð Þ*s rð Þ; ½4:18%
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where J sd is an exchange integral, m̂ represents the local moments of the 3d

electrons, and s represents the expectation value of the conduction electron

spin,

s rð Þ¼
X

i

c!
i rð Þŝci rð Þ; ½4:19%

with ci being an occupied single-particle wave function in state i and

ŝ¼ sx;sy;sz
! "

being the vector of Pauli matrices. While detailed electronic

structure calculations have established that the electronic states at the Fermi

energy are more likely to be hybridized s and d states, this simplified picture

is useful for understanding the qualitative features of spin-transfer torques.

From the torque equation (Eq. 4.2) and the form of the sd exchange in-

teraction (Eq. 4.18), it would appear that no torques should be exerted on the

local moments by the conduction electron spins if these spins are collinear

with the local magnetization. How do torques get transferred from a spin-

polarized current to the magnetic order parameter? For any torques to ap-

pear, it is necessary for the spin polarization of the current to be noncollinear

with the background magnetization. This noncollinearity can arise in pat-

terned multilayered films, such as spin valves or magnetic tunnel junctions.

Consider the multilayer stack in Fig. 4.5 in which there are two ferromag-

netic layers, a “reference” layer and a “free” layer. Suppose a current is ap-

plied perpendicularly to the film plane (CPP) in which the electrons flow

from the reference layer to the free layer. The incident current arriving from

a normalmetal is unpolarized, but it becomes polarized upon passage through

the reference layer and the outgoing electron flux is collinear with the

Reference layer

Free layer

I

(a) (b)

Figure 4.5 Typical examples of physical geometries in which CPP torques appear,
where I indicates the current flow perpendicular to the film plane. (a) Nanopillars.
(b) Nanocontacts.
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reference layer magnetization. The reference layer, therefore, acts as a

“polarizer” for the incident electron current. If the reference and free-layer

magnetizations are noncollinear, then the spin-polarized current incident on

the free layer will lead to a torque on the free-layer magnetization, by virtue

of the sd exchange interaction described earlier. If the free layer is sufficiently

thin, this torque will be exerted on themagnetization across the entire thick-

ness of the free layer.

A description of these spin-transfer torques was first given independently

by Berger [3] and Slonczewski [4] in 1996. Consider the multilayer structure

in Fig. 4.5a, where the magnetization orientation of the reference layer is

labeled by p̂ and the free-layer magnetization by m̂. It was shown that

the spin-transfer torque acting on m̂ can be expressed as

TCPP¼ ! yð Þℏ
e

g
Msd

Jm̂( m̂( p̂ð Þ; ½4:20%

where J is the CPP current density. Under this convention, J>0 represents

conventional current flow from the reference layer to the free layer (i.e.,

electron flow from the free layer to the reference layer). Note that the pre-

factor to the double vector product has units of angular frequency, which

can be interpreted as the rate of spin-momentum transfer to the free-layer

magnetization. The dimensionless function ! depends on the details of

the transport through the multilayer (materials, film thicknesses) and is a

function of the angle between the free- and reference-layer magnetizations,

cosy¼ m̂*p̂. In the simplest case, the constant form !(y)¼!0 yields the sine
approximation (as the cross product gives a sine dependence on the torque).

The angular dependence of the spin torque, as originally obtained by

Slonczewski, can be written in the form [22]

! yð Þ¼ q

AþBcosy
; ½4:21%

where q, A, and B are material- and transport-dependent parameters.

This form is referred to as the symmetric Slonczewski approximation and

was obtained for a pseudo spin-valve system in which the free and

polarizer layers have equal thickness. In general, due to the asymmetry of

the spin-valve layer thicknesses and composition, the more general asym-

metric form is expected,

! yð Þ¼ qþ
AþBcosy

þ q#
A#Bcosy

; ½4:22%
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which is referred to as the asymmetric Slonczewski form. There is a general

consensus that the angular dependence of the spin torque depends strongly

on the details of the multilayer structure [22–34]. More complicated forms

for !(y) have been reported in the literature. An interesting case involves a

“wavy” angular dependence, in which the transport properties of a spin valve

are tailored such that !(y0)¼0 for y0 6¼0, p, with y0 being a stable magneti-

zation configuration for the free layer [32,34]. Some experimental evidence

has been put forward for the realization of such wavy torques [35,36].

Spin-transfer torques also appear with currents flowing through contin-

uous systems in which there are spatial gradients in the magnetization. We

denote these torques as current-in-plane (CIP) torques to distinguish them

from the CPP torques discussed earlier. Such torques were first proposed by

Berger and coworkers from studies of magnetic domain wall dynamics in

permalloy under applied currents [1,2]. Some relevant experimental geom-

etries for CIP torques are shown in Fig. 4.6.

The magnitude of these torques depends largely on how closely the

conduction electron spins track the local magnetization as the current flows

through the region of nonuniform magnetization [37–40]. In the limit of

adiabatic transport, the spin-up and spin-down electrons remain in their

energy eigenstates (with respect to the exchange splitting induced by the sd

interaction) as they traverse the magnetization gradients. This occurs through

a gradual precession of the conduction electron spin about the local sd effective

field associated with the local moments, which in turn results in the mutual

precession of the local moments about the sd effective field associated with

the conduction electron spins. In the nonadiabatic limit, processes involving

spin-flip scattering for the conduction electrons become important.

A quantitative description of CIP torques comprising adiabatic and

nonadiabatic contributions has been given by Zhang and Li [39]. They

(a) (b) (c)

I

Figure 4.6 Examples of physical geometries in which CIP torques appear. (a) Submicron
disks. (b) Wires. (c) Nanocontacts. The arrows indicate the current flow.
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considered the sd model in the diffusive limit for spin transport and derived

the effective torques acting on the local magnetization in this limit. It was

found that the spin torques can be included into the torque equation

(Eq. 4.2) as

TCIP ¼# u*rð Þm̂þbm̂( u*rð Þm̂½ %; ½4:23%
where u has the units of velocity and represents an effective spin drift veloc-

ity of the spin current [41],

u¼P
ℏ
2e

g
Ms

J rð Þ; ½4:24%

and J(r) is the current density flowing in the film plane, with P

representing the spin polarization of this current. The first term on the

right-hand side of Eq. (4.23) represents the adiabatic torque and the second

term the nonadiabatic torque, which is characterized by the dimensionless

parameter b.
Like the Gilbert damping constant a, the nonadiabatic parameter b

represents a phenomenological constant that is related to the dissipative part

of CIP spin torques. While there remains much debate in the community

concerning the precise value of b, it is generally accepted that b is on the

same order of magnitude as a, with estimates for the ratio k¼b/a ranging

from 1 to 10 [42–47]. Recent theoretical work has shown that nonlocal

transport processes can strongly influence the magnitude of b for regions

of sharp magnetization gradients, such as in micromagnetic configurations

containing vortex structures [48,49]. In such cases, it has been shown that

terms involving higher-order spatial derivatives are required to supplement

the torque equation (Eq. 4.23).

2.5. Lagrangian formulation of magnetization dynamics
Up to this point, the three key elements of current-driven magnetization

dynamics—precession, damping, and spin-transfer torques—have been pres-

ented in terms of torque equations. This approach is the most commonly

followed for historical reasons, as it provides a simple and direct way of

visualizing the influence of various torques on the time evolution of the

magnetization vector, as Fig. 4.4 illustrates.However, for dynamics involving

nontrivial micromagnetic states, such as fluctuations about nonuniform

ground-state configurations or the dynamics of topological solitons such

as domain walls and vortices, it is more convenient to cast the dynamics in

terms of variables that characterize the amplitude of these dynamical modes.
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The Lagrangian formulation of magnetization dynamics is one such

approach that allows the dynamics of specific micromagnetic states to be

described while taking into account the constraints that define such states.

The conservative part of the magnetization dynamics can be described by

the Lagrangian density

L¼Ms

g
_F 1# cosYð Þ#E Y;F½ %; ½4:25%

where _F¼ @tF, and Y¼Y(r) and F¼F(r) represent the orientation

of the local magnetization vector in spherical coordinates, that is,

m̂¼ cosF sinY, sinF sinY, cosYð Þ. The first term on the right-hand side

is often referred to as the “Berry-phase” term and plays the role of a “ki-

netic” energy. The second term is the magnetic free energy functional, E,
which comprises the usual contributions that lead to the effective field

defined earlier for the Landau–Lifshitz equation (Eq. 4.2). If the micro-

magnetic state can be parameterized in terms of a set of reduced variables

representing generalized coordinates qi, for example, the position of the core

in the film plane (X0, Y0) of a magnetic vortex, then the dynamics can be

obtained from the total Lagrangian L,

L¼
ð
dVL Y rð Þ,F rð Þ½ %ð Þ; ½4:26%

with the usual Euler–Lagrange equations,

d

dt

@L

@ _qi
#@L

@qi
¼ 0; ½4:27%

describing the conservative dynamics.

Nonconservative forces can be included into this description using a

Rayleigh dissipation function W, which is obtained from the density, W,

as W¼
Ð
dV W. This leads to the additional term in the Euler–Lagrange

equations

d

dt

@L

@ _qi
#@L

@qi
þ@W

@ _qi
¼ 0: ½4:28%

For Gilbert damping, the dissipation function density is

WG¼ aMs

2g
dm̂

dt

''''

''''
2

; ½4:29%

which in spherical coordinates for the magnetization vector becomes
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WG¼ aMs

2g
_Y
2þ sin2Y _F

2
) *

: ½4:30%

This form makes explicit the analogy between Gilbert damping and general

viscous damping where the frictional force is proportional to the square of

the generalized velocities.

Consolo et al. showed that the CPP spin torques can be derived from the

dissipation function density [50]

WCPP¼#! yð Þℏ
e

J

d
p̂* m̂(dm̂

dt

+ ,
: ½4:31%

In contrast to the dissipation function for Gilbert damping, which is

positive-definite, the sign of the dissipation function for the CPP spin tor-

ques depends on the polarity of the applied current J. As such, spin torques

can either increase or decrease the energy dissipation in the system, and it is

the latter that is important for allowing self-sustained magnetization

oscillations.

For the CIP spin torques, it is interesting to note that the full equations of

motion with these torques,

d

dt
þu*r

+ ,
m̂¼#g0m̂(Heff þam̂( d

dt
þku*r

+ ,
m̂

% &
; ½4:32%

where k,b/a, can almost be obtained directly from the Landau–Lifshitz

equation with Gilbert damping,

dm̂

dt
¼#g0m̂(Heff þam̂(dm̂

dt
; ½4:33%

by substituting the time derivative with a “convective” derivative,

d/dt!d/dtþu*r. The simple substitution fails to account for the k term

in the dissipative part of the dynamics. For k¼1, the system becomes Gal-

ilean invariant with respect to the translations afforded by the vector u, and

the substitution of the time derivative with the convective derivative leads to

the exact equations of motion. However, almost all experiments on current-

driven domain wall motion to date have shown that generally k>1, which

suggests that Galilean invariance is broken due to the fact that dissipation

processes in the laboratory frame are not equivalent to the processes in

the stationary reference frame given by u. This suggests that dissipation
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channels that do not drift with the effective spin drift current u, such as local

magnetic impurities or defects, are at the origin of this broken Galilean

invariance. The dynamics can be obtained by substituting the appropriate

convective derivatives into the Berry phase and Gilbert dissipation

functions,

LCIP¼
Ms

g
d

dt
þu*—

+ ,
F

% &
1# cosYð Þ#E Y;F½ %; ½4:34%

WCIP ¼
aMs

2g
d

dt
þu*—

+ ,
Y

% &2
þ sin2Y

d

dt
þu*—

+ ,
F

% &2( )
: ½4:35%

3. LINEAR AND NONLINEAR SPIN-WAVE MODES

3.1. Transformation to spin-wave variables
The magnetization dynamics described by Eq. (4.2) represents a compli-

cated micromagnetics problem, which has strong space and time depen-

dence of the magnetization variables. For the class of current-driven

excitations involving spin-wave modes, the problem can be simplified

by integrating out the spatial profiles of these modes. This simplification

allows the entire dynamics to be described in terms of the respective

spin-wave mode amplitudes, which represent the normal modes of the

system. These modes can represent oscillations about a uniform or

nonuniform ground state, with the latter being more likely in confined

geometries such as nanopillars.

A standard prescription for obtaining the normal modes or spin-wave

coordinates is through the Holstein–Primakoff transformation [51]. It

involves transforming the spin operators describing the magnetic state into

creation and annihilation operators for a harmonic oscillator. This allows for

the magnetic Hamiltonian to be diagonalized in terms of harmonic oscillator

states at lowest order, with a controlled prescription for including higher-

order interactions between the different normal modes of oscillation.

In the following example, a brief overview of the transformation to spin-

wave variables is given. Consider a uniformly magnetized ground state in

which the magnetization is oriented along the z direction, which defines

the quantization axis for the spin-wave modes. It is convenient to define
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the (normalized) circular magnetization m-¼mx- imy. These variables are

then transformed into the dimensionless fields a(r) and a†(r),

mþ rð Þ¼ 2gmB
MsV

 !1=2
1# gmB

2MsV

 !

a{ rð Þa rð Þ

" #1=2
a rð Þ,

m# rð Þ¼ 2gmB
MsV

 !1=2
a{ rð Þ 1# gmB

2MsV

 !

a{ rð Þa rð Þ

" #1=2
,

mz rð Þ¼ 1# gmB
MsV

 !
a{ rð Þa rð Þ;

½4:36%

which satisfy the commutation relation,

a rð Þ,a{ r0ð Þ
- .

¼ d r# r0ð Þ: ½4:37%

For a uniform magnetic ground state, it is useful to expand the fields a(r) and

a†(r) in terms of plane wave states,

a rð Þ¼
X

k

e#ik*rak;a
{ rð Þ¼

X

k

eik*ra{k; ½4:38%

where the ak variables are boson operators that satisfy the commutation relations

ak;a
{
k0

h i
¼ dk,k0 : ½4:39%

In the macroscopic limit such as the micromagnetics approximation

considered here, it suffices to take the spin-wave variables (ak,ak
† ) as dimen-

sionless complex numbers (ak,ak
!). By substituting these variables for the spin

deviation operators, the magnetization components can be expressed as

mþ rð Þ¼ 2gmB
MsV

 !1=2 X

k

e#ik*rak#
gmB
2MsV

 !
X

k,q,q0
ei k#q#q0ð Þ*ra!kaqaq0 þ . . .

" #
,

m# rð Þ¼ 2gmB
MsV

 !1=2 X

k

eik*ra!k#
gmB
2MsV

 !
X

k,q,q0
ei #kþqþq0ð Þ*raka

!
qa

!
q0 þ . . .

" #

,

mz rð Þ¼ 1# gmB
MsV

X

kq

ei k#qð Þ*ra!kaq:

½4:40%

Note that the expression for mz is exact, while the expressions for the trans-

verse magnetization components represent a power series expansion of the

square root function in Eq. (4.36).
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A number of magnetic interactions are diagonalized directly by this

transformation. One example concerns the Zeeman energy associated with

an applied magnetic field along the z-axis,H¼H0ẑ. Because this term cou-

ples only to the z component of the magnetization, the total energy

expressed in terms of spin-wave variables can be obtained by integrating

over the mz component,

EZ ¼#m0H0Ms

ð
dVmz rð Þ¼E0þ

X

k

ℏo0a
!
kak; ½4:41%

where E0¼#m0H0MsV is a constant background term and o0¼g0H0.

As nk¼ a!kak represents the occupation number of the spin-wave mode k,

the Zeeman energy can be interpreted as a sum over all occupied magnon

states, where each state costs ℏo0 in energy. In other words, each spin flip

created by a magnon increases the total system energy by ℏo0. Another

example is the isotropic exchange interaction, which involves terms such

as (rmþ)(rm#) and (rmz)
2. By applying Eq. (4.40) to this interaction, it

can be shown that

Eex¼
ð
dV Eex rð Þ¼

X

k

ℏoka
!
kakþ

X

klmn

Vklmna
!
ka

!
l amanþ*** ½4:42%

whereok¼ (2Ag/Ms)k
2 is the linear contribution to the spin-wave frequency

in the long wavelength limit. This interaction also leads to higher-order

nonlinear terms in the Hamiltonian, such as Vklmn, which represents the

scattering potential for the four-magnon process.

On the other hand, dipolar interactions are not diagonalized by the spin-

wave variables in Eq. (4.40). A pertinent example involves the induced shape

anisotropies in nanoscale magnetic elements. For an in-plane magnetized thin

film, the dipolar interactions lead to a hard-axis anisotropy of the form

Ed ¼
1

2
m0M

2
s N xx

ð
dVmx rð Þ2; ½4:43%

withN xx being a transverse component of the demagnetizing tensor. As m2
x

contains terms such asmþmþ and m#m#, in addition to the mþm# terms, the

lowest-order spin-wave expansion of the hard-axis anisotropy leads to

E
2ð Þ
d ¼

X

k

Aka
!
kakþBkaka#kþB!

ka
!
ka

!
#k

! "
; ½4:44%
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where Ak and Bk are complex scattering amplitudes that depend on the

details of the geometry [52,53]. The dipolar interaction leads to a scattering

between þk and #k spin waves, which indicates that the plane wave states

chosen in the transformation (Eq. 4.40) are not the true eigenmodes of the

system. The correct eigenmodes can be found by applying a Bogoliubov

transformation to a set of spin-wave variables bk,

ak
a!#k

% &
¼ uk v!k

vk uk

% &
bk
b!#k

% &
½4:45%

where the transformation coefficients are

uk¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Akþok

2ok

r
; ½4:46%

vk¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ak#ok

2ok

r
exp i’kð Þ; ½4:47%

ok¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
k#4 Bkj j2

q
: ½4:48%

This second transformation leads to the desired form for the lowest-order

bilinear term,

E
2ð Þ
d ¼

X

k

ℏokb
!
kbk: ½4:49%

The phase ’k in the transformation is related to the azimuthal angle of the

wavevector k. The eigenmodes bk represent elliptical precession of the mag-

netization, where the ellipticity is determined by the Bk terms. Physically,

magnetization precession is elliptical when the transverse demagnetization

factors are different, which is the case for in-plane magnetized systems in

a thin film geometry. Note also that the ellipticity of a spin-wave mode

depends on its propagation direction with respect to the static magnetization

orientation, as described by the presence of the phase ’k.

For nonuniform micromagnetic ground states, the spin-wave eigenmodes

are unlikely to be simple planewave states such as those used in the transforma-

tion in Eq. (4.40). In such cases, it is possible to obtain the eigenmode profiles

usingaTaylor series expansionof themagnetic energy functional (Eq. 4.25).Let

!(r) and x(r) represent fluctuations about the equilibrium magnetic state, de-

fined by the profile (Y0(r), F0(r)) in spherical coordinates. Thus, the energy

functional E[Y, F] can be expanded as
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E Y0þ!,F0þx½ % ¼E Y0;F0½ %

þ
ð
dV

dE
dY

" #

Y0;F0ð Þ

! rð Þþ
ð
dV

dE
dF

" #

Y0;F0ð Þ

x rð Þ

þ 1

2!

ð
dV

ð
dV 0 d2E

dY rð ÞdY r0ð Þ

" #

Y0;F0ð Þ

! rð Þ! r0ð Þ

þ 1

2!

ð
dV

ð
dV 0 d2E

dF rð ÞdF r0ð Þ

" #

Y0;F0ð Þ

x rð Þx r0ð Þþ . . . ;

½4:50%

where terms such as dE/dY(r) represent functional derivatives. The first-

order functional derivatives vanish as these constitute the differential equations

satisfied by the equilibrium state, (Y0(r), F0(r)), by definition. The second-

order terms in the expansion typically lead to eigenvalue equations for the

fluctuations ! and x of the form

#r2þ f ! rð Þ,rð Þ
- .

! rð Þ¼L! rð Þ; ½4:51%

where the solutions determine the spatial profiles of these fluctuations.

By using the appropriate orthogonality relations satisfied by these eigen-

functions, one can use them as the basis for the spin-wave transformation

described earlier. An interesting example involves fluctuations about a Bloch

domain wall, which represents a special case in which known analytical

solutions exist for the ground state and the spin-wave excitations about this

state [54,55]. It has been shown that this prescription can be used to obtain

bilinear and four-magnon interaction terms to describe how spin waves in-

fluence domain wall dynamics under applied fields [56] and spin-polarized

currents [57].

By using these transformations to spin-wave coordinates, an approximate

spin-wave Lagrangian can be derived,

L¼
X

k

iℏb!kbk#E; ½4:52%

where E represents the total spin-wave Hamiltonian. For a harmonic oscil-

lator Hamiltonian H¼
X

k
ℏokb

!
kbk, it is straightforward to verify that the

Euler–Lagrange equations of motion lead to the expected harmonic time

dependence for the spin-wave amplitudes
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dbk
dt

¼#iokbk: ½4:53%

In this picture, phenomenological damping can be introduced into the

equations of motion directly using the mode-dependent relaxation rate Gk,

dbk
dt

¼#iokbk#Gkbk: ½4:54%

This represents the dynamics of a damped harmonic oscillator.

3.2. Single-mode theory
The spin-wave formalism developed in the previous section allows for an

oscillator model for the spin-torque-driven excitation of a single spin-wave

mode to be derived. This single-mode theory is largely motivated by exper-

imental observations in which current-driven magnetization oscillations can

often be described by the presence of one dominant mode in the power

spectrum. As discussed toward the end of this section, the single-mode

approximation remains robust even when other competing spin-wave

modes are present.

A schematic illustration of how spin-wave excitations are driven by spin

torques is shown in Fig. 4.7. There are no excitations at equilibrium at zero

Equilibrium

S
pin torques

Below threshold At threshold

R
el

ax
at

io
n

k = 0 k  0

Figure 4.7 Illustration of spin-torque-driven excitations of spin waves. Below threshold,
spin torques partially compensate the damping rate of spin waves.
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temperature and any excited spin wave decays toward equilibrium through

spin-flip processes with a mode-dependent relaxation rate. When a spin-

polarized current is present, the transfer of spin angular momentum acts

to partially compensate for the spin-wave relaxation. When the rate of

spin-transfer matches the relaxation rate of a given mode, a threshold is

reached, and self-oscillations of the excited mode appear if the current is

further increased. The single-mode theory is based on the premise that

the mode with the lowest relaxation rate is excited to self-oscillation.

Let us suppose that a mode of wavevector or index k is driven to self-

sustained oscillations by spin-transfer torques. To the fourth order in the

spin-wave variables, the Hamiltonian can be written as

Ek¼ ħokb
!
kbkþTkb

!
kb

!
kbkbk; ½4:55%

where Tk represents the scattering potential of the four-magnon terms

corresponding to the self-interaction of the k mode. As only one mode is

assumed to be excited, all three-wave processes that lead to the excitation

of modes with either half or double the frequency of the excited mode bk
are neglected in the Hamiltonian. Thus, only self-interacting terms are kept

among the possible four-wave processes. By using the random field approx-

imation, averages over pairs of the operators can be made and it is possible to

factor out the magnon population nk¼ hb!kbki in the four-magnon term.

This leads to the simplified form

Ek¼ ℏokþTknkð Þb!kbk; ½4:56%

which corresponds to the renormalization of the spin-wave energy due to

the finite population nk of the spin-wave mode.

For a spin polarization p̂ collinear with the quantization axis ẑ, spin tor-

ques result in a change in the damping rate of the spin-wave modes, as the

spin angular momentum transferred either enhances or reduces the rate of

spin flips associated with the excited magnons. This can be seen by com-

paring the Slonczewski torque (Eq. 4.20) with the damping term in

Eq. (4.15) for an effective field along ẑ. For parallel orientation of the

free- and reference-layer magnetizations, p̂¼ ẑ, and a positive J acts to

destabilize the free-layer magnetization, while for an antiparallel orienta-

tion, p̂¼#ẑ, and a negative J is required for the same effect. In the

following discussion, it is assumed that the current flow acts to destabilize

the free-layer magnetization.

From Eq. (4.31), the dissipation function is found to be
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FCPP ¼ ! yð Þℏ
e

J

d
mx _my#my _mx

! "
¼ i

2
! yð Þℏ

e

J

d
mþ _m##m# _mþð Þ: ½4:57%

After introducing the transformation to spin-wave variables in Eq. (4.40)

and ignoring the ellipticity in the precession, the random field approxima-

tion can be applied to obtain

FCPP ¼
ð
dVFCPP¼ i!0

ℏ
e
I

gmB
MsV

+ ,
1# gmB

MsV
nk

+ ,
_b
!
kbk# b!k

_bk
) *

; ½4:58%

where the volume integration is over a film of thickness d and I is the total

applied current.

By combining the above resultswith a phenomenological damping rateGk,

the equation of motion for the current-driven mode can be obtained [58]:

dbk
dt

¼#i okþ
Tk

ℏ
nk

+ ,
bk#Gkbkþ!0

ℏ
e
I

gmB
MsV

+ ,
1# gmB

MsV
nk

+ ,
bk: ½4:59%

At this point, it is convenient to rescale the magnon variables,

ck¼
gmB
MsV

+ ,1=2
bk; ½4:60%

where the new ck represents a fraction of the spin deviation in scaled units,

rather than individual spin flips as given by the bk variables. Similarly, the

magnon population is recast as a dimensionless mode power, |ck|
2¼nk( gmB/

MsV ), which leads to the simplified form [59,60]

dck
dt

¼#i okþNkjckj2
! "

ck# Gk#sI þsI ckj j2
! "

ck; ½4:61%

where

Nk¼
Tk

ℏ
gmB
MsV

½4:62%

represents a nonlinearity coefficient of the mode frequency and

s¼ !0
ℏ
e

gmB
MsV

½4:63%

is a parameter describing the spin-transfer efficiency. The product sI, which
has units of angular frequency, represents the rate of spin angular momentum
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transferred to the spin-wave mode. For positive currents I>0, the spin

transfer opposes Gk and can therefore be interpreted as a negative damping.

The nonlinearity in the spin-transfer term gives rise to the self-oscillatory

state. The spin-wave mode amplitude ck can be expressed in terms of its

amplitude r and phase f,

ck tð Þ¼ r tð Þeif tð Þ; ½4:64%

which upon substitution into Eq. (4.61) leads to the following coupled

equations of motion,

dr

dt
¼# Gk#sIþsIr2

! "
r; ½4:65%

df
dt

¼# okþNkr
2

! "
: ½4:66%

As discussed previously in Section 2, this represents a dynamical system in

which a limit cycle appears through a supercritical Hopf bifurcation. It is

useful to define the supercriticality parameter z as

z¼ sI
Gk

, I

Ith
; ½4:67%

where Ith¼Gk/s is the threshold current for self-oscillations. Thus, the con-

dition for self-oscillations is defined by the point at which the rate of negative

damping, sI, compensates for the rate of positive damping,Gk, as illustrated in

Fig. 4.7. In the single-mode picture, the underlying assumption is that the

excited mode corresponds to the mode with the lowest damping rate Gk,

which corresponds to the mode with the lowest threshold current. The equa-

tion of motion for the mode amplitude becomes

dr

dt
¼#Gk 1# zþ zr2

! "
r: ½4:68%

In the subcritical regime (or below threshold), z.1, the only admissible

stationary solution to this equation is the trivial r0¼0 solution. This corre-

sponds to the case in which the dynamical solution only has a stable fixed

point at origin, where all trajectories in phase space spiral toward this fixed

point. Above the threshold or in the supercritical regime z>1, we have the

appearance of a stable limit cycle with a radius defined by

r20 ¼
z#1

z
: ½4:69%
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In this regime, r0¼0 becomes an unstable fixed point, and all trajectories in

phase space spiral toward the limit cycle defined in Eq. (4.69). Note that the

nonlinearity in the spin-torque term is required for the existence of the stable

limit cycle.

The sign of the frequency nonlinearity depends on the geometry of the

free layer and the nature of the spin-wave mode excited. Because this non-

linearity originates from the self-interacting terms in the four-wave scattering

processes, its sign depends on the nature of the dominant terms that contribute

to these processes. In the systems of experimental interest, the dominant

contribution to the nonlinearity arises from the shape anisotropy associated

with dipolar interactions.

To see how the nonlinearity coefficient can be obtained in practice,

consider the simple example of the uniform precession mode (k¼0) in a

nanoelement in which the static magnetization is perpendicular to the film

plane. Let z represents the axis perpendicular to the film plane and assume

that an external field H0 is also applied along this direction. The magnetic

energy in this configuration is

E¼ m0Ms

ð
dV #H0mz rð Þþ1

2
N zzMsmz rð Þ2

+ ,
; ½4:70%

whereN zz/ 1 represents the demagnetizing factor for the shape anisotropy

in this geometry. By applying the transformation to spin-wave variables as

before b,b0, the following Hamiltonian is obtained:

H¼ℏg0 H0#N zzMsð Þb!bþℏg0N zz
gmB
2V

b!b!bb: ½4:71%

As before, a random phase approximation can be applied to factor out the

mode population n0 ¼ hb!bi,

H¼ℏg0 H0#N zzMsð Þb!bþℏg0N zz
gmB
V

n0b
!b: ½4:72%

From this, it can be recognized that T0¼ℏg0N zzgmB=V , from which the

nonlinear mode frequency (in oscillator variables) can be deduced to be

o0¼ g0 H0#N zzMsð ÞþN0jcj2; ½4:73%

where

N0¼ g0MsN zz ½4:74%
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is positive in this case. The mode frequency therefore increases with the

mode power (and supercriticality) in this geometry, a phenomenon often

referred to as a frequency blueshift [61,62].

For in-plane magnetized configurations in thin films, a simple expression

for the nonlinear coefficient Nk is more difficult to obtain because magne-

tization precession is elliptical and Bogoliubov transformations are required

to diagonalize the spin-wave Hamiltonian [58]. Nevertheless, for an arbi-

trary orientation of the equilibriummagnetic state, Slavin and Kabos showed

that an approximate form for the nonlinear coefficient N0 can be obtained

from dependence of the ferromagnetic resonance mode as a function of the

magnetization angle out of the film plane [59]. It is found that

N0 yð Þ/ g0Ms
H0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H0 H0þMs cos2yð Þ

p 2# 1þMs=H0ð Þcot2y
1þ 1þMs=H0ð Þcot2y ; ½4:75%

where y represents the angle between the equilibrium magnetization

orientation and the film plane. We note that for the in-plane magnetized

case (y¼0),

N0 /#1

2
g0Ms

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H0

H0þMs

r
: ½4:76%

This shows that the nonlinearity leads to a frequency redshift in in-planemag-

netized systems, which has been confirmed in a number of experiments

[13,14,62,63].

3.3. Bullets in nanocontacts
An interesting example of localized spin-wave modes occurs in the nano-

contact geometry (see Fig. 4.5). In this geometry, currents are applied to

an extended spin valve film through a small metallic contact, with lateral sizes

ranging from 20 to 200 nm, which leads to spin torques being applied only

locally in the vicinity of the nanocontact. For an in-planemagnetized system,

it has been shown earlier that the frequency nonlinearity of quasi-uniform

modes leads to a decrease in the mode frequency as the mode amplitude

increases. As a result, it is possible for spin torques to drive modes into the

spin-wave gap of the film, that is, below the frequency defined by the approx-

imate dispersion relation o kð Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ok okþoMð Þ

p
, where oK ¼ g0HþDk2,

oM ¼ g0Ms, and H is the applied field in the film plane.
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Slavin and Tiberkevich approached this problem by expanding the os-

cillator equation to account for mode dispersion and the localized nature

of the spin torques in nanocontacts [64]. They considered the dynamics

of the uniform spin-wave mode for which a spatial variation in the mode

amplitude is allowed, c0¼ c0(r, t),

dc0
dt

¼#i o0#Dr2þN0jc0j2
! "

c0#G0c0þsIf r=Rcð Þ 1# jc0j2
! "

c0; ½4:77%

where N0 is given by Eq. (4.76) and f (r/Rc) is a function that describes the

spatial distribution of the applied current, and Rc is the radius of the circular

nanocontact. We may recognize that in the absence of damping and current

(G0¼0, I¼0), the ansatz

c r; tð Þ¼C0c r=lð Þe#iot; ½4:78%

where o¼o0þN0C
2
0, leads to a nonlinear Schrödinger equation for the

dimensionless function c(x):

c
00
þ1

x
c0þc3#c¼ 0: ½4:79%

As the dispersion D>0 and nonlinearity N<0 have opposite signs, the

Lighthill criterion ND<0 indicates that localized solitonic solutions to

c(x) are possible. This criterion expresses the fact that soliton structures are

only stable when the dispersive nature of a wave is compensated by a non-

linearity, for example, in the Bloch domain wall where the exchange inter-

action prefers to spread out the rotation between neighboring spins

(dispersion) but the anisotropy prefers to minimize this spread by aligning

spins along the easy axis (nonlinearity). Numerical solutions to this nonlinear

differential equation show that the excitedmode is a localized nonlinear spin-

wave mode, or bullet, which exists primarily in the nanocontact region. It is

found that the calculated mode frequency agrees well with measured exper-

imental spectra on nanocontacts [65], as shown in Fig. 4.8a. The stability of

the bullet mode has also been confirmed by micromagnetics simulations

[66,67], where it is found that the excitation of themode exhibits a hysteretic

behavior as a functionof applied current.A comparisonof the simulationpro-

files of the self-localized bullet mode and propagating spin-wave modes in a

nanocontact geometry are given in Fig. 4.8b. Clear signatures of the bullet

mode have also been brought to light in more recent experiments

[68,69], where the existence of the mode as a function of the frequency

nonlinearity N0, varied experimentally by tilting the magnetization out of
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the film plane, has been studied. Simulations of nanocontacts on a wire

geometry have also revealed localized excitations [70].

3.4. Nanocontacts as spin-wave emitters
For systems with magnetization oriented out of the film plane, the frequency

blueshift of the excited mode does not lead to self-confinement effects for

dynamics in a nanocontact system. In contrast, the driven magnetization
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leads to the generation of radiative spin-wave modes that propagate outward

from the nanocontact in the magnetic free layer [11,59]. An example of a

computed spatial profile of such propagative modes is given in Fig. 4.8b.

Hoefer et al. showed that a variety of propagating mode structures appear

when the current-induced Oersted–Ampère fields in the nanocontact are

taken into account [71]. For current flow perpendicular to the film plane

through a circular nanocontact, the associated Oersted–Ampère fields

consist of concentric circular field lines centered around the nanocontact,

whose magnitude varies as a function of radial distance from the nanocontact

center, much like the magnetic fields generated by a cylindrical wire. If an

additional uniform magnetic field is applied to the free layer, the circular

symmetry of the Oersted–Ampère field is broken. As a result, spin-wave

propagation away from the nanocontact becomes anisotropic, leading to

the possibility of generating collimated spin-wave beams and vortex spiral

waves [71]. The nature of the excited modes is shown to depend strongly

on material parameters, such as the film thickness of the free magnetic layer,

and the relative magnitude of the external and Oersted–Ampère fields.

Experimental evidence for propagating spin-wave modes was first

deduced from measurements of mutual phase-locking between two nano-

contact oscillators sharing the same free magnetic layer [72,73]. In this

geometry, the nanocontacts are independently current-biased and separated

by edge-to-edge distances of 150 nm to 1 mm.When both nanocontacts are

driven to self-oscillation, the propagating spin waves emitted at each nano-

contact give rise to an effective coupling between the two oscillators [74],

which leads to clear signatures of synchronization, such as frequency-pulling

and increased power output, over a certain interval of the applied current

[72,75]. By using focused-ion beams to physically cut the magnetic film

in between the two nanocontacts, it was shown that the mutual

phase-locking could be strongly suppressed [73]—a result expected for

spin-wave-mediated interactions. Direct measurements of propagating spin

waves have been achieved since the development of spatially resolved

Brillouin light spectroscopy. Demidov et al. produced a two-dimensional

map of the spin waves emitted from an elliptical nanocontact and showed

that the intensity of the emitted beams depends strongly on the in-plane

magnetic field orientation [76,77]. Other Brillouin light scattering experi-

ments by Madami et al. showed that the emitted spin waves can be measured

up to a few microns from the nanocontact in permalloy films [78]. These

results highlight the possibility of employing magnetic nanocontacts as

spin-wave emitters for potential applications in magnonics [77,79]. It has
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been shown that operation frequencies as high as 65 GHz can be reached in

the nanocontact geometry [80].

3.5. Multiple modes
The discussion so far has been centered on a single-mode approximation in

which the spin-wave eigenmode with the lowest damping rate dominates

the excitation spectrum under spin torques. An interesting question arises

when the excitation threshold for two modes is sufficiently close such that

the competition between these modes cannot be neglected. To account for

this scenario, it is necessary to retain terms in the three- and four-wave

interactions that can contribute to the coupling between the two modes.

Consider the following spin-wave Hamiltonian representing two inter-

acting modes:

H¼
X

k¼1,2
ℏokb

!
kbkþ

X

k, l,m,n¼1,2
Tklmnb

!
kb

!
l bmbn: ½4:80%

The four-wave interaction term represents higher-order processes originat-

ing from the exchange and dipolar interactions. As before, the interaction

term can be simplified by using a mean field approximation in which the

magnon population is factored out and ensemble-averaged two-magnon

processes, such as hb!kbmi for k 6¼m, are ignored,
X

k, l,m,n¼1,2
Tklmnb

!
kb

!
l bmbn/

X

k,m¼1,2
Tkm b!kbk

/ 0
b!mbm; ½4:81%

where hb!kbki¼nk is recognized as the mode population, as before. By ap-

plying similar approximations to the spin-torque term, the modified equa-

tion of motion for the mode k in oscillator variables can be written as

dck
dt

¼#i okþNkjckj2
! "

ck# Gk#sIþsI jckj2
! "

ck

þ iNkmþskmIð Þjcmj2ck: ½4:82%

Here, skm represents the contribution from the spin-torque-induced cou-

pling between the two modes. The equation of motion for the m mode

can be obtained by interchanging the k and m indices in Eq. (4.82). This

equation shows that the coupling between the two modes depends on

the intensity or population of each mode.

De Aguiar et al. showed that such an interacting two-mode system leads

to a rich nonlinear dynamics, which shares key features of the population
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dynamics of predator–prey models [81]. Their calculations are based on

material parameters taken from an experimental study of oscillations in

a nanopillar device [82]. The modes considered have frequencies of

o1¼4.275 GHz and o2¼10.09 GHz, and an identical threshold current

is taken for both modes. The population dynamics was obtained using

numerical integration of the coupled nonlinear equations of motion, with

the thermal magnon population for each mode serving as the initial condi-

tions for the magnon power |ck|. It was found that the coexistence of the

two spin-wave modes occurs only within a small interval of the

supercriticality, 1<z<1.2, after which only one dominant mode is seen

in the steady state. For supercriticalities in the range of 1.2<z<zc, where
zc⋍2.662, only the o1 mode exists, while for z>zc, only the o2 is seen in

the steady state. This mode transition is illustrated in Fig. 4.9a, where the

population of the two modes is presented as a function of supercriticality.

The phase portrait of this dynamics is presented in Fig. 4.9b at the

supercriticality z¼zc at which the mode transition takes place. One observes

the existence of an unstable fixed point at the origin, corresponding to the

trivial case of no oscillations, in addition to the presence of two stable fixed

points corresponding to finite population levels for either mode 1 or mode 2,

and a saddle point at finite population values for both modes. Thus, the

nature of the dominant mode excited depends very much on the initial

conditions, and fluctuations in experimental systems could potentially lead

to different modes being measured depending on how the corresponding
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experiment would be performed. The phase portrait highlights the analogy

with population dynamics in biological systems such as the Lotka–Volterra

model [15], which describes the evolution of two competing species with

access to the same finite food resources. In such models, the different growth

rates of each species and the interaction between the two often lead to one

species driving the other to extinction [15]. For the two-mode oscillator, the

limit cycle for one oscillation mode is made possible by compensating for

damping with the incoming flux of spin angular momentum through

spin-transfer torques, at the expense of populating the secondmode. Because

such dynamics are strongly nonlinear and depend very much on initial

conditions and the supercriticality, signatures for such mode transitions in

experiment could appear as a hard excitation for one mode (e.g., mode 2

in Fig. 4.9a) or stochastic hopping between the two modes.

4. ROLE OF THERMAL NOISE

4.1. Stochastic oscillator model
Noise is present in any physical system at finite temperatures. In the context

of self-sustained oscillations, thermal fluctuations perturb the dynamics such

that the oscillator encounters random perturbations to its trajectory along the

limit cycle. The influence of noise is important because it determines the line

shape of the power spectral density of the oscillations and therefore limits the

quality factor and power of such oscillators. While theoretical methods for

treating noise in self-sustained oscillators are well established [83–86],

spin-torque oscillators present a unique feature in their strong frequency

nonlinearity, where frequency shifts can be much larger than spectral lin-

ewidths, N ckj j20 do, as observed in Fig. 4.1. As a result, quantitative the-

ories for spin-torque oscillators require this nonlinearity to be accounted for

explicitly. In this section, the influence of noise on the self-sustained dynam-

ics of the current-driven spin-wave modes is discussed. In particular, the

single-mode theory is extended to include stochastic terms in the equations

of motion, which is then solved in certain limits to obtain the spectral prop-

erties of the oscillation mode.

Noise can be accounted for in the oscillator model (Eq. 4.61) by includ-

ing a stochastic term fk(t) in the equation of motion [87]

dck
dt

¼#i okþNk ckj j2
! "

ck# Gk#sIþsI ckj j2
! "

ckþ fk tð Þ; ½4:83%
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which results in a stochastic differential equation for the mode amplitude ck.

The stochastic term is a phenomenological representation of the interaction

between the excited spin-wave mode and the thermal bath with which it is

in contact. A physical choice for describing the spectral properties of the sto-

chastic term is a Gaussian white noise associated with thermal magnons,

which has zero mean,

fk tð Þh i¼ 0; ½4:84%

and satisfies the two-time correlation function [88]

f !k tð Þfk0 t0ð Þ
/ 0

¼ 2Gknk,0
gmB
MsV

+ ,
dk,k0d t# t0ð Þ: ½4:85%

nk,0¼ [exp(ℏok/kBT )#1]#1 represents the occupation number of the spin-

wave mode k at thermal equilibrium. To convince ourselves that this is in-

deed a suitable choice, let us consider the linear equation in the absence of

spin torques,

dck
dt

¼# iokþGkð Þckþ fk tð Þ; ½4:86%

which has the formal solution

ck tð Þ¼ ck,0e
# iokþGkð Þtþ

ðt

0

dt0e# iokþGkð Þ t#t0ð Þfk t0ð Þ: ½4:87%

By combining this solution with the stochastic oscillator equation (Eq. 4.83)

and the noise properties (Eq. 4.85), a differential equation can be derived for

the mode power,

d ckj j2

dt
¼ ck

dc!k
dt

þ c!k
dck
dt

¼#2Gk ckj j2#nk,0
gmB
MsV

+ ,% &
; ½4:88%

which, when expressed in terms of the spin-wave variables bk (Eq. 4.60),

leads to the simple expression

dnk
dt

¼#2Gk nk#nk,0
! "

; ½4:89%

where nk¼ hb!kbki represents the mode population, as usual. This equation

describes how the mode population nk relaxes toward its thermal equilib-

rium value at the characteristic rate given by Gk. This justifies the choice

of the thermal equilibrium occupation nk,0 as the magnitude of the thermal
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noise source, as in the absence of any driving terms, the mode occupation nk
must go over to its thermal equilibrium value. In the remainder of this dis-

cussion, it is assumed that this noise level remains constant with the nonlin-

earities and the level of supercriticality considered.

As the spin-wavemodes of experimental interest are typically in the giga-

hertz range, it suffices to use the approximation

nk,0/
kBT

ℏok
½4:90%

for the thermalmode population.With the definition of the noise amplitude q,

q¼ agkBT
MsV

; ½4:91%

where the approximate relation Gk/aok has been used for the Gilbert re-

laxation rate, the autocorrelation function for fk can be written in a more

compact form,

f !k tð Þfk0 t0ð Þ
/ 0

¼ 2qdk,k0d t# t0ð Þ: ½4:92%

The key physical quantity of interest is the two-time autocorrelation

function of the current-driven mode,

Kk tð Þ¼ c!k tð Þck 0ð Þ
/ 0

; ½4:93%

which gives a quantitative measure of the coherence of the excitations. The

Fourier transform of this correlation function gives the power spectral den-

sity S(o) of the oscillations,

S oð Þ¼
ð1

#1
dte#iotK tð Þ: ½4:94%

In most experiments, electrical measurements of voltage oscillations in spin

valves or magnetic tunnel junctions give access to either Eq. (4.93) in time-

domain experiments or Eq. (4.94) in the frequency domain. As the stochastic

oscillator equation (Eq. 4.83) represents a nonlinear Langevin equation for

which an analytical solution is difficult, if not impossible, to obtain, limiting

cases in which the stochastic problem is amenable to analytical approaches is

examined in the following section.

4.2. Spectral properties in the subcritical limit
In the subcritical limit well below the threshold for self-oscillation, the non-

linearities in the frequency and spin-torque terms can be neglected,
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dck
dt

¼# iokþGk#sIð Þckþ fk tð Þ: ½4:95%

By using Eq. (4.87), a solution to the autocorrelation function for the excited

mode amplitude ck can be constructed,

Kk t# t0ð Þ¼ c2k,0e
iok t#t0ð Þe# Gk#sIð Þ tþt0ð Þ þ2qeiok t#t0ð Þe# Gk#sIð Þjt#t0j; ½4:96%

where the spectral properties of fk have been used to simplify the integrals

over terms such as h fk(t)i and h f k!(t)fk(t0)i. The first term on the right-hand

side represents the short-time correlations, which can be neglected in the

long-time limit of large t and t0 after which information about the initial con-

dition ck,0 is lost. Thus, the power spectrum of the oscillation mode k is

found to be

S oð Þ¼ 4q Gk#sIð Þ
o#okð Þ2þ G2

k#sI
! "2 : ½4:97%

The power spectrum of the current-driven spin-wave mode k therefore pos-

sesses a Lorentzian line shape with a full width at half maximum of

Do¼ 2 Gk#sIð Þ: ½4:98%

The total integrated spectral power remains constant as a function of

supercriticality,
ð
doS oð Þ¼ 4pq; ½4:99%

while the spectral line amplitude increases like

S okð Þ¼ 4q

Gk#sI
: ½4:100%

From these expressions, one observes that it is possible to estimate the

threshold current in experimental systems by extrapolating the linear depen-

dence of Do to zero linewidth, which occurs at sI¼Gk, that is, at threshold.

This method has been employed in magnetic tunnel junctions in which the

breakdown voltage of the insulating tunnel barriers does not permit the

threshold to be attained [89]. Alternatively, a linear extrapolation of the in-

verse power 1/S(ok) can be used for the same purposes, which has been

shown to be useful for estimating the threshold in spin-valve nanopillars

[90,91].
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4.3. Spectral properties in the supercritical limit
Far above threshold, self-sustained oscillations are described by dynamics

along the limit cycle, which remains well-defined in the presence of noise.

In this regime, noise leads to two kinds of fluctuations: phase fluctuations,

which lead to random jumps along the limit cycle, and amplitude fluctua-

tions, which lead to deviations perpendicular to the motion along the limit

cycle. Schematic illustrations of these two kinds of fluctuations are given in

Fig. 4.10. As spin torque oscillators exhibit a strong frequency nonlinearity,

fluctuations in the amplitude of oscillations will also lead to fluctuations in

the instantaneous frequency, which translates to phase fluctuations. Thus,

there is a strong phase–amplitude coupling for the fluctuations in these

systems.

For sufficiently large supercriticality, the equations of motion can be lin-

earized around the zero-noise limit cycle r0. Fluctuations around the excited

mode amplitude, dr(t), can be introduced as follows:

ck tð Þ¼ r tð Þe#i’ tð Þ ¼ r0þdrð Þe#i’ tð Þ; ½4:101%

where r0 satisfies Eq. (4.69) and dr+ r0. By substituting this solution into

Eq. (4.83) and retaining linear terms in dr(t), the following coupled equa-

tions for the amplitude and phase variations are obtained [92,93]:

ddr tð Þ
dt

þ2 sI#Gkð Þdr tð Þ¼Re ef k tð Þ
h i

; ½4:102%

d’ tð Þ
dt

þo r20
! "

¼#2Nkr0dr tð Þþ
1

r0
Im ef k tð Þ
h i

; ½4:103%

(a) (b)

www

(c)

Figure 4.10 Schematic illustration of noise in oscillators. (a) Motion along a circular limit
cycle in zero noise at an angular frequency o. (b) Amplitude noise, which consists of
deviations in the amplitude perpendicular to the limit cycle. (c) Phase noise, which con-
sists of jumps along the limit cycle.
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where oðr20Þ¼okþNkr
2
0 is the nonlinear mode frequency and

ef k tð Þ¼ fk tð Þei’ tð Þ. Terms such as dr(t)fk(t) have been neglected, as it is

assumed the noise and amplitude fluctuations are uncorrelated and

therefore such terms average to zero. The transformed noise terms ef k tð Þ rep-
resent noise in the rotating frame of the oscillator. For the oscillator

frequencies of interest, it can be assumed that the noise remains white in this

rotating frame, such that ef k tð Þ possesses the same spectral properties as fk(t).

The amplitude fluctuations, which are described by an Ornstein–

Uhlenbeck process [94], are damped out at a characteristic rate given by

Ga¼ sI#Gk¼Gk z#1ð Þ: ½4:104%

This rate increases with current, which means that the amplitude of noise-

driven excursions from the limit cycle is damped out faster the further the

system is driven above threshold. The correlation function for the amplitude

fluctuations can be found by integrating the differential equation (Eq. 4.102)

and applying spectral properties of the white noise ef k. The fluctuations have
zero mean, hdr(t)i, and possess a time correlation of

dr tð Þdr t0ð Þh i¼ q

2Ga
e#2Gajt#t0j: ½4:105%

While dr(t) is a Gaussian process by virtue of ef k being a Gaussian process, the
finite relaxation time Ga means that these fluctuations have a memory on the

order of timescales of G#1
a . As such, the amplitude fluctuations have the

characteristics of a colored noise source. The dissipation rate Ga is also an im-

portant parameter for determining the oscillator agility, as the rate at which

amplitude fluctuations damp out determines the limit at which the oscillator

frequency can be modulated. This is a key issue for proposed applications of

spin-torque oscillators as field sensors, which are based on the principle of

measuring small changes in magnetic fields by detecting concomitant

changes in the oscillator frequency [95–97].

The oscillator phase is therefore governed by a stochastic process in

which both colored and white noise sources drive the dynamics, as described

by the first and second terms on the right-hand side of Eq. (4.103), respec-

tively. By integrating the first-order differential equation (Eq. 4.103), the

mean value of the phase is found to be

’ tð Þh i¼’0#o r20
! "

t; ½4:106%
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where’0 is an initial value. By combining this with the spectral properties of

dr(t) and ef k tð Þ, and by assuming that these noise sources are uncorrelated, the

variance of the phase, D’2(t)¼ h’(t)i2# h’(t)2i, can be evaluated to give

D’2 tð Þ¼ q

r20
1þ v2
! "

jtj# v2

2Ga
1# e#2Gajtj

) *% &
; ½4:107%

where

v¼ Nk

Gkz
½4:108%

is a dimensionless nonlinearity parameter. The autocorrelation function for

the oscillator can be expressed in terms of the mean and variance of the

phase,

K tð Þ¼ r20e
i ’ tð Þh i# ’ 0ð Þh ið Þ exp #1

2
D’2 tð Þ

% &
: ½4:109%

The dynamics described in Eq. (4.107) gives rise to features that are not

present in oscillatory systems with zero or weak frequency nonlinearities

(v+1). In the linear limit (v¼0), the phase variance is given by the linear

time relation,

D’2 tð Þ¼ q

r20
jtj; ½4:110%

where q=r20 can be recognized as a diffusion constant for a Brownianmotion-

like diffusion in the phase variable. This is a general result for linear fre-

quency oscillators, where the linear time dependence in the phase variance

leads to a Lorentzian spectral line shape with a linewidth given by [87]

Do0¼
q

r20
: ½4:111%

The linewidth is proportional to the temperature, as q/T, and is inversely

proportional to the mode power, r20 . In contrast, spin-torque oscillators can

possess a strong frequency nonlinearity, v201. It is therefore necessary to

consider the nonlinear time dependence of the phase variance (Eq. 4.107)

in full.

While no analytical expressions exist for the Fourier transform of the au-

tocorrelation function with the full nonlinear phase variance, it is possible to

obtain solutions in two limiting cases. At sufficiently low temperatures

where the coherence time of the oscillations, tc, is much longer than the
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damping rate of the amplitude fluctuations, tc 0G#1
a , the colored properties

of the amplitude fluctuations are unimportant for the phase oscillations and

they can be taken to be a white noise source. In this limit, the long-time

approximation can be applied to neglect the exponential term in

Eq. (4.107), which leads to

D’2 tð Þ/ q

r20
1þ v2
! "

tj j: ½4:112%

A linear time dependence of the phase variance is recovered, but the fre-

quency nonlinearity leads to a renormalization of the linear oscillator

linewidth by a factor of (lþv2) [92,93],

DoLT¼
q

r20
1þ v2
! "

: ½4:113%

The spectral line shape is therefore Lorentzian at low temperatures with a

linewidth that increases linearly as a function of the temperature. At

sufficiently high temperatures at which the coherence time of the oscillations

is much shorter than the decay rate of amplitude fluctuations, tc+G#1
a , the

finite lifetime or “memory” of these fluctuations must be accounted for.

A short-time approximation can be used in this limit to expand the expo-

nential in Eq. (4.107) in a power series, giving

D’2 tð Þ/ q

r20
tj jþ v2Gat

2
! "

: ½4:114%

For sufficiently large frequency nonlinearities, v201, the linear term can be

neglected and only the quadratic term in t can be retained. In contrast to the

linear and low-temperature cases, the spectral function corresponding to a

correlation function with a quadratic time dependence is a Gaussian,

SHT Oð Þ¼ 2p
qGa

+ ,1=2
r
3=2
0

vj j
exp # r20

2v2qGa
O#o r20

! "! "2
% &

; ½4:115%

with a full width at half maximum of

DoHT¼ 2
ffiffiffiffiffiffiffiffiffi
2ln2

p vj j
r0

ffiffiffiffiffiffiffi
qGa

p
: ½4:116%

It is interesting to note that the linewidth in the high-temperature limit var-

ies like
ffiffiffiffi
T

p
, in contrast to the linear time dependence observed in the linear

or low-temperature cases. This behavior is characteristic of inhomogeneous

broadening [98], where in the present case the amplitude fluctuations lead
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to fluctuations in the oscillator frequency as a result of the frequency non-

linearity. This temperature dependence has also been reported in macrospin

simulations of spin-torque oscillators [99].

A numerical approach can be used to study the transition between the

two regimes. In Fig. 4.11, the temperature dependence of the linewidth is

shown for different values of the frequency nonlinearity. The two limiting

cases can clearly be identifiedon the log–log scale,with the linear temperature

variation at low temperatures and the
ffiffiffiffi
T

p
dependence at high temperatures.

The transition between the two regimes occurs over a broad range of tem-

peratures, which shifts toward lower temperatures as the level of frequency

nonlinearity increases.

Experimental tests of this theory have been examined by a number of dif-

ferent groups on different systems. Boone et al. found good agreement be-

tween the analytical theory and the power spectra of spin-torque-driven

oscillations in spin-valve systems [100], in particular, on aspects involving

the variation of the linewidth, amplitude relaxation rate Ga, and line shape

as a function of supercriticality. Good agreement has also been found in exper-

iments involving the parametric excitation of spin-torque-driven oscillations
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in magnetic nanocontacts conducted by Urazhdin et al. [101]. Bianchini et al.

performed time-resolved experiments on current-driven excitations in the

synthetic antiferromagnet of a magnetic tunnel junction, in which the phase

variance was directly measured as a function of applied current below and

above threshold. These measurements allowed for information on the fre-

quency nonlinearity parameter v and amplitude relaxation rate Ga to be

extracted [102]. The value of v has also been determined in magnetic tunnel

junctions from studies of the current dependence of the excited power spectra

[103]. Quinsat et al. studied the amplitude and phase noise in magnetic tunnel

junctions using time-resolved measurements, which allowed for the coupling

between the phase and amplitude fluctuations to be quantified [104]. A more

detailed study on similar structures as a function of temperature has been per-

formed by Sierra et al. [105]. However, other time-domain measurements by

Keller et al. have shown that there are 1/f contributions to the low-frequency

phase noise [106,107], whose origins remain unknown at present.

Another aspect involves the strong dependence of the spectral linewidth

on the nonlinearity parameter, v. As this parameter is directly related to the

nonlinear frequency shift coefficient, Nk, it is possible to vary its magnitude

and sign in experiments by changing the nature of the oscillatory mode

through applied external magnetic fields. In experiments on magnetic

nanocontacts, Rippard et al. demonstrated that the spectral linewidth exhibits

large variations as a function of the tilt angle of the magnetization with respect

to the film plane [108]—a result that was subsequently explained using the

oscillator theory presented here [92]. A similar effect has been observed for

magnetization dynamics in nanopillars, where a strong linewidth variation

has been observed as a function of in-plane orientation of the free-layer mag-

netizationwith respect to the easy/hard axes of the nanopillar [109–111]. Sim-

ilar results have also been observed in magnetic tunnel junctions [112]. It has

also been shown theoretically by Gusakova et al. that current-induced cou-

pling between the free and reference layers in a magnetoresistive stack can lead

to changes in the oscillator linewidth, owing to a modulation of v [113].

4.4. Line shape distortion near threshold
Simple expressions for the spectral line shape can only be obtained in lim-

iting cases where linearization of the stochastic equations of motion is pos-

sible. While such procedures are useful in these limits, a different theoretical

approach is required to describe the line shape at arbitrary levels of criticality.

In general, the line shape is expected to be non-Lorentzian as a result of the
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large coupling between phase and amplitude fluctuations through the strong

frequency nonlinearity. A pertinent example of such behavior involves the

threshold region, where the amplitude fluctuations are expected to be as

large as the oscillation amplitude r0 itself. In this regime, there is no clear limit

cycle about which linearization methods can be applied.

The general problem can be tackled by solving the Fokker–Planck equa-

tion associated with the nonlinear Langevin equation in Eq. (4.83). The

Fokker–Planck equation describes the time evolution of the probability den-

sity function P ck; tð Þ, which describes the probability of finding the stochastic
oscillator in the state ck at time t. Because the Fokker–Planck problem involves

solving a deterministic linear differential equation, its solution is usually more

tractable than the stochastic nonlinear differential equation in Eq. (4.83).

We review the general prescription for constructing the Fokker–Planck

problem, which follows the treatment given by Risken [94]. Consider a set

of Langevin equations characterizing a set of macroscopic variables {xl},

_xi¼ hi xlf gð Þþ gij xlf gð Þxj; ½4:117%

where hi and gij are functions of the variables {xl}, and xj represents a
stochastic term with a specified spectral property. If the functions gij are

independent of the variables {xl}, then the stochastic processes are termed

additive; if they depend on {xi}, the processes are termed multiplicative.

Now, if the stochastic forces are of the Gaussian white noise type,

x tð Þh i¼ 0; ½4:118%
xi tð Þxj t0ð Þ
/ 0

¼ 2dijd t# t0ð Þ; ½4:119%

then the system (Eq. 4.117) describes a Markovian process, which finds an

equivalent description in terms of a Fokker–Planck equation for the distri-

bution function P,P xlf g; tð Þ,

@P
@t

¼ # @

@xi
Di xlf gð Þþ @2

@xixj
Dij xlf gð Þ

+ ,
P; ½4:120%

where Di is the drift vector,

Di ¼ hi xlf gð Þþ gkj xlf gð Þ
@gij xlf gð Þ

@xk
; ½4:121%

and Dij is the diffusion tensor,

Dij ¼ gik xlf gð Þgjk xlf gð Þ: ½4:122%
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P xlf g; tð Þ represents the probability density of finding the system in a state

with variables {xl} at an instant t. Unless specified otherwise, summation

over repeated indices is assumed.

By applying this approach, the Fokker–Planck equation associated with

the amplitude and phase dynamics in Eq. (4.83) can be constructed [114].

Again, the approach relies on the single-mode approximation in which only

the mode k is excited. Let fk(t)¼ f1(t)þ if2(t). It will also be convenient to

scale out the time variable using the relaxation rate as the characteristic time

scale, t,Gkt. With these definitions, the Langevin equations for the ampli-

tude and phase variables are

dr

dt
¼# 1#zþzr2

! "
rþ 1

Gk
f1 cos’þ f2 sin’ð Þ; ½4:123%

d’

dt
¼# 1

Gk
okþNkr

2
! "

þ 1

Gkr
f2 cos’# f1 sin’ð Þ: ½4:124%

By using the normalization condition for this coordinate transformation,

P r;’;tð Þ=r¼P c1; c2;tð Þ, and applying the prescription described earlier,

the corresponding Fokker–Planck equation is found to be

@P r;’;tð Þ
@t

¼ L̂FPP r;’;tð Þ; ½4:125%

where the Fokker–Planck operator for the spin-torque oscillator is

given by

L̂FP ¼
@

@r
zr3# z#1ð Þr# q

r

h i
þ eokþ eNkr

2
! " @

@f
þ q

@2

@r2
þ 1

r2
@2

@f2

+ ,
;

½4:126%

with the rescaled parameters

eNk¼
Nk

Gk
, eok¼

ok

Gk
: ½4:127%

The essence of this technique is to recast the nonlinear Langevin problem

in terms of a set of deterministic linear differential equations that can be

solved using standard mathematical techniques. Consider the following

ansatz for the solution,

P r;’;tð Þ¼ e#ieokt
X

m,n
cm,nxm rð Þein’e#lm,nt ½4:128%
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which leads to an eigenvalue equation for the unknown function xm(r).
However, as it stands, the differential equation obeyed by this function is

not Hermitian. The Fokker–Planck operator can be brought into Hermitian

form with the transformation

L̂¼ eF rð Þ=2L̂FPe
#F rð Þ=2; ½4:129%

where

F rð Þ¼ 1

2q

1

2
zr4# z#1ð Þr2

% &
# lnr: ½4:130%

Thus, if x(r) are eigenfunctions of the original Fokker–Planck operator L̂FP,

then the functions

cm,n rð Þ¼ eF rð Þ=2xm,n rð Þ ½4:131%

are eigenfuctions of the transformed Hermitian operator L̂ with the same

eigenvalues lm,n. The Hermitian operator leads to a Schrödinger equation

for cm,n(r),

q
@2cm,n
@r2

# Vn rð Þ#lm,n
- .

cm,n ¼ 0; ½4:132%

where the effective potential has the form

Vn rð Þ¼ a#2

r2
þ a0þ a2r

2þ a4r
4þ a6r

6; ½4:133%

which is parameterized by the coefficients

a#2 ¼ n2#1

4

 !

q,

a0¼ z#1,

a2¼
1

4q
z#1ð Þ2#2z# i eNn,

a4¼# z#1ð Þz
2q

,

a6¼
z2

4q
:

½4:134%

Thus, the problem of solving the full Fokker–Planck equation is reduced to

solving the Schrödinger equation for a fictitious particle in the potential

Eq. (4.133).
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To compute the spectral line shape of the oscillator, it is necessary to

first determine the autocorrelation function K tð Þ. This function can be

expressed in terms of the normalized solutions cm,n(r) to the Schrödinger

equation,

c!k tð Þck t0ð Þ
/ 0

¼ e#iokt
X

m

Fm,1e
#lm,1Gkjt#t0j; ½4:135%

where only the n¼1 terms contribute to this sum. (Higher values of the in-

dex n are relevant to higher-order correlation functions, such as n¼2 for

correlations of intensity fluctuations hc! (t)c(t)c! (t0)c(t0)i.) The coefficient

Fm,n in the series expansion is given by

Fm,n ¼
%ð1

0

dr rc0,0 rð Þc!
m,n rð Þ

&
(

ð1

0

dr rc0,0 rð Þcm,n rð Þ
% &

: ½4:136%

As Eq. (4.135) is expressed as a sum of decaying exponential functions in |t|,

it follows that the Fourier transform of Eq. (4.135) leads to the power

spectrum

S Oð Þ¼
X

m

Fm,1

O#ok#GkIm lm,1
! "- .2þ GkRe lm,1

! "- .2; ½4:137%

which consists of a series expansion in terms of partial Lorentzians. Aside

from the difference in amplitude Fm,1, each partial Lorentzian can have a dif-

ferent central frequency and linewidth, depending on the details of the spec-

trum of complex eigenvalues. The spectral line shape of a spin-torque

oscillator is therefore expected to be asymmetric around its central frequency

in the general case.

In practice, line shape asymmetry is important only near the threshold,

where there are sizable contributions from the first few terms in the expan-

sion (Eq. 4.137). An example of a comparison between theory and exper-

iment is given in Fig. 4.12. The experimental data pertain to a spin-valve

nanopillar for which the threshold current is estimated to be Ith/5.2 mA.

Below this threshold current, the line shape is Lorentzian, where only the

lowest-order term in the expansion (Eq. 4.137) contributes to the power

spectrum. For applied currents slightly above the threshold, nonnegligible

contributions from the higher-order terms are observed, which lead to a

measurable distortion in the spectral line profile. This distortion leads to

the phenomenon of a linewidth minimum just above threshold [114], which

has been observed in experiments on spin-valve nanopillars [63,101,115]

and in magnetic tunnel junctions [116].
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5. VORTEX OSCILLATIONS

5.1. The vortex state and relevant geometries
The discussion in the last two sections has been centered on the self-oscillatory

dynamics of linear and nonlinear spin-wave modes. In the linear limit, these

modes represent the normal modes of an equilibrium micromagnetic state,

which may be spatially nonuniform depending on the oscillator geometry.

At large driving currents, nonlinearities arise but can be described as extensions

of these linear spin-wave modes. In this section, a different kind of self-

sustained dynamics is considered in which the oscillation involves the spatial

translation of a well-defined micromagnetic state.

The focus of this section is directed toward the vortex state, which is

known to exhibit self-oscillations under spin torques. The vortex state rep-

resents a micromagnetic configuration in which the moments curl in the

film plane and culminate out of the film plane in a compact region termed

the vortex core. The configuration results from a competition between the

exchange and dipolar energies of the interacting magnetic moments. This
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Figure 4.12 Comparison of theoretical and experimental spectral lines near threshold
(Ith¼5.2 mA) for a spin-valve nanopillar oscillator. Thick solid lines in (a)–(c) represent
spectral lines as predicted by Eq. (4.137), with the first dominant m modes shown as
shaded curves. Circles in (d)–(f) are experimental data at T¼225 K taken from Ref.
[63] with thick solid lines representing a double Lorentzian fit. Shaded curves are indi-
vidual Lorentzian profiles used in the fits. After Fig. 2 of Ref. [114]. © American Physical
Society.
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curling configuration in the film plane, in cylindrical coordinates (r, f, z) for
the spatial variable r (with z being the direction perpendicular to the film

plane), can be described by the following ansatz for the azimuthal angle

for the magnetization orientation,

F0 rð Þ¼ qf-p
2
; ½4:138%

where q¼-1,- 2, . . . is the vorticity and the sign of p/2 determines whether

the moments curl in a clockwise or counterclockwise direction. The q¼1 case

represents a vortex statewheremoments rotateby2p around thevortex core and
represents the most common state observed in the experiment, while q¼#1

corresponds to an antivortex state. By assuming a radially symmetric solution

for the polar angle Y(r)¼Y(r), with the vortex core centered at the origin,

the exchange and dipolar terms for the q¼1 state gives rise to the total energy

E¼Ad

ð
d2r

@Y rð Þ
@r

+ ,2

þ sin2Y rð Þ
r2

" #

þm0M2
s

4p

ð
d2r

ð
d2r0 cosY rð ÞcosY r0ð ÞG r;r0;dð Þ; ½4:139%

where

G r;r0;dð Þ¼ 1

r#r0k k
# 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r#r0k k2þ d2
q ½4:140%

is a Green’s function, with r¼ (r, z) and d being the film thickness [117].

Note that there are no volume magnetic charges, r*m̂¼ 0, and the surface

magnetic charges are confined to the core region in which there is a mag-

netization component perpendicular to the film plane. By applying the usual

variational scheme, we find that this energy functional is minimized by the

equilibrium configuration Y0(r) satisfying the integro-differential equation

@2Y0 rð Þ
@r2

þ 1

r
@Y0 rð Þ
@r

# sin2Y0 rð Þ
2r2

þ lex
2pd

sinY0

ð
d2r0G r;r0;dð ÞcosY0 r0ð Þ; ½4:141%

wherelex¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A=m0M2

s

p
is the exchange length.While no analytical solutions

exist for the core profileY0, a number of schemes can be used to approximate

the solution to differing levels of accuracy [118]. One simple analytical form is

the Usov ansatz
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cosY0 rð Þ¼ p
b2#r2

b2þr2
r< b

0 r2 b

8
<

: ½4:142%

where b represents the core radius and p is the vortex core polarization.

A comparison of this approximation with a numerically calculated profile

is given in Fig. 4.13. As this illustrates, the vortex core represents a compact

region in which large changes in the magnetization orientation occur over a

characteristic length scale given by lex. The lateral extension of the vortex

core is typically 10–20 nm and the profiles as shown in Fig. 4.13 have been

confirmed in experiments [120].

Vortex states are equilibrium ground states in systems with confined ge-

ometries. The simplest example involves the circular magnetic dot in a thin

film geometry, where the dot radius L is much larger than the film thickness,

L0d, and L0lex. The curling configuration in such systemsminimizes the

surface magnetic charges at the edges of the dots, as the local moments are

parallel to the dot edges everywhere. This configuration therefore mini-

mizes the dipolar energy due to edge surface charges. In spin valves andmag-

netic tunnel junctions patterned into circular spin valves, it has been shown

in a number of experiments that CPP spin torques can drive these vortex

states into self-sustained oscillations [121–127].

Vortex states can also be nucleated by localized field sources. An interesting

exampleconcerns themagneticnanocontact,where largeelectrical currents are

applied to a spin-valve multilayer through a small metallic nanocontact, with
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Figure 4.13 Micromagnetic structure of a vortex. (a) Three-dimensional view of the vor-
tex core profile obtained frommicromagnetic simulations. (b) Comparison between the
simulated core profile, obtained with the MuMax software [119] for a 20-nm-thick
permalloy film, and the Usov ansatz (Eq. 4.142).
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lateral dimensions of 20–200 nm. As a large component of this current flows

perpendicular to the filmplane [128,129], theOersted–Ampère field generated

by the current possesses a curling configuration in the film plane,much like the

field generated by a perfect cylindrical wire, whose field lines consist of con-

centric circles around the wire. In such systems, the vortex state appears as a

result ofminimizing the Zeeman energy associatedwith thisOersted–Ampère

field. In contrast to nanopillars, a combination of CIP and CPP torques is

required to drive vortices into self-oscillations in the nanocontact geometry

[128,130–133].

5.2. Thiele equation
A magnetic vortex represents a complex micromagnetic structure, so its dy-

namics requires in principle the time evolution of the magnetization field

m̂ r; tð Þ to be described in all space. However, a reduced set of equations

of motion can be obtained by integrating out certain degrees of freedom,

much in the same way as the single-mode model for current-driven

spin-wave excitations described in the previous sections. One useful ap-

proach involves the assumption that the dynamics can be described by a

rigid translation of the entire vortex configuration. For dynamics in the film

plane (in which magnetization is assumed to be uniform along the film

thickness), this approach involves elevating the position of the vortex core,

(X0,Y0), to a dynamical variable such that the micromagnetic profile

becomes m̂ r; tð Þ¼ m̂ x#X0 tð Þ,y#Y0 tð Þ½ %. Thus, the dynamics of the

micromagnetics problem is reduced to a two-dimensional dynamical

system defined by X0(t) and Y0(t). The resulting equation of motion is

referred to as the Thiele equation [134] and forms the basis of the rigid

vortex model.

For current-driven vortex dynamics, the Thiele equation can be derived

using the Lagrangian formalism detailed in Section 5, where the generalized

coordinates are given by X0;Y0; _X0; _Y 0

! "
. Consider first the conservative

dynamics given by Eq. (4.25). From the rigid vortex model, the time var-

iation in the azimuthal and polar angles can be expressed as

_F r; tð Þ¼ _X0*rX0
F¼# _X0*rXF ½4:143%

and

d

dt
cosY¼# sinY _X0*rX0

Y
! "

¼ sinY _X0*rXY
! "

; ½4:144%
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which allows variations of the Berry-phase part of the Lagrangian to be writ-

ten as

d

dt

@LB

@ _X0

#@LB

@X0
¼#Ms

g
_Y 0

ð
dV sinY

@Y
@x

@F
@y

#@Y
@y

@F
@x

 !

,

d

dt

@LB

@ _Y 0

#@LB

@Y0
¼Ms

g
_X0

ð
dV sinY

@Y
@x

@F
@y

#@Y
@y

@F
@x

 !

:

½4:145%

These terms can be expressed in a more compact form using the gyrovector,

G¼Ms

g

ð
dV sinY rY(rFð Þ; ½4:146%

which can be evaluated to be G¼Gẑ, where G¼2pMsdpq/y. By assuming

the general form U¼U(X0,Y0) for the magnetic potential energy experi-

enced by the vortex, the conservative equations of motion associated with

the Lagrangian L¼LB#U can be written as

G( _X0¼# @U

@X0
; ½4:147%

where the right-hand side represents the conservative force derived from the

potentialU. In contrast to more familiar mechanical systems in which a force

gives rise to an acceleration, F¼m €X0, the vortex dynamics in the rigid

model approximation is manifestly non-Newtonian. The response of the

vortex to a force involves motion in a direction perpendicular to this force.

For a central potential U(R0) in which the radial force is directed toward the

potential minimum, the vortex dynamics is characterized by a circular

gyrotropic motion around the potential minimum. In a general sense, the

principle of self-sustained gyration of magnetic vortices involves compensat-

ing for damping processes with spin torques such that a dynamical equation

like Eq. (4.147) is recovered.

For Gilbert damping, the rigid vortex model leads to terms in the vari-

ation of the dissipation function such as

@WG

@ _X0

¼ aMs

2g

ð
dV 2 _X0

@Y
@x

 !2

þ2 _Y 0
@Y
@x

 !
@Y
@y

 !" #

þaMs

2g

ð
dV sin2Y 2 _X0

@F
@x

 !2

þ2 _Y 0
@F
@x

 !
@F
@y

 !" #

;

½4:148%
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with a similar expression for _Y 0. These terms can be expressed in a more

compact form using the damping dyadic
$
D,

$
D¼Ms

g

ð
dV rY3rYþ sin2Y rF3rFð Þ

- .
; ½4:149%

which represents a 2(2 matrix. For the Usov ansatz, the dyadic reduces to
$
D¼D

$
I, where

$
I is the identity matrix and D¼ (pMsd/y) [2þ ln(L/b)],

where L is the system size and b the vortex core radius. The contribution

of the Gilbert term to the equations of motion for the rigid vortex is

@WG

@ _X0

¼ aD _X0: ½4:150%

To obtain the relevant terms describing CPP spin torques, it is useful to

decompose the polarization vector p̂ into in-plane and perpendicular-

to-plane components, where p̂¼ p;0;p?ð Þ can be defined without loss of

generality. For the in-plane component, the relevant term for the

dissipation function associated with the CPP torques is

x̂* m̂(@m̂

@t

+ ,
¼ _X0*rxY
! "

sinFþ1

2
_X0*rxY

! "
sin2YcosF; ½4:151%

while for the perpendicular-to-plane component,

ẑ* m̂(@m̂

@t

+ ,
¼# _X0*rxY

! "
sin2Y: ½4:152%

This leads to the additional term in the equation of motion,

@WCPP

@ _X0

¼ !ℏ
ed

ð

Os

dVJ rð Þ

pk rð Þ sinFrxYþ1

2
sin2YcosFrxF

 !

# p? rð Þ sin2YrxF

" # ½4:153%

where the integration is limited to the volume Os in which the applied cur-

rents exist. The integrals above also take into account any spatial variations in

the applied current density J and the polarization vector p̂. From the inte-

grals, we can also deduce the role of the p|| and p? components of the CPP

torques. As rXY 6¼0 and sin 2Y 6¼0 only at the vortex core (see profile in

Fig. 4.13), the in-plane component of the CPP spin torques acts only on the

vortex core region, which results in only a small contribution to the overall
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dynamics. On the other hand, sin2Y¼1 everywhere except in the core re-

gion, so the perpendicular component of the CPP torques is important.

5.3. Nanocontact oscillations
The rigid vortexmodel described above gives a suitable approximation to the

dynamics in extended systems where boundary conditions are unimportant.

A good example of such a system is themagnetic nanocontact where currents

are applied locally through a metallic nanocontact, but the spin-valve multi-

layer is unpatterned and remains a continuous film.

Consider the nanocontact system illustrated in Fig. 4.5, where it is assumed

that a vortex state is present in themagnetic free layer and the reference layer is

uniformly magnetized but tilted out of the film plane, such that both p|| and

p? components are nonvanishing. The nanocontact is taken to be circular

with radius a. It is assumed that the current flowing through the nanocontact

is spatially uniform within the nanocontact, J(r)¼ I/(pa2), where I is the ap-
plied current, and zero everywhere outside the nanocontact. By using the

Usov ansatz, the CPP spin-torque terms can be evaluated to give the force

@WCPP

@ _X0

¼ !ℏI
e

pjj
b

a2
p
0

% &
H R0# að Þþp?

1

2R2
0

#Y0

X0

% &+ ,
; ½4:154%

whereH(x) is the Heaviside function and R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
0 þY 2

0

p
is the radial posi-

tion of the vortex core. The p|| contribution is obtained by restricting the

integration over the core region, leading to a constant force while the core

is located within the nanocontact but vanishes when the core is outside it.

As such, this component of the CPP torques is only active for transient dy-

namics where the core is situated inside the nanocontact region. Otherwise,

this term can be neglected for steady-state gyration of the vortex core outside

the nanocontact, which is the regime of interest. The p? contribution is

obtained by neglecting contributions from the core magnetization, that is,

by assuming sin2Y0/1 everywhere, and integrating over the whole nano-

contact region. This term is active for all positions of the vortex core relative

to the nanocontact area. In the following discussion, only the p?will be con-

sidered, which allows the CPP torques to be written as

@WCPP

@ _X0

¼ !ℏI
2e

p?
ẑ(X0

R2
0

: ½4:155%

As discussed in Section 5, the CIP spin torques can be included by gen-

eralizing the time derivatives to convective derivatives in the equations of
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motion for magnetization. The adiabatic torques can be found by using the

substitution @ t!@ tþu *r. Recall that the rigid vortex approximation al-

lows the time derivatives to be expressed in terms of the core velocity, as

shown in Eq. (4.143). As the drift term induced by the adiabatic spin torques,

u*r, shares the same form as Eq. (4.143), they can be incorporated into the

gyrovector term in the equations of motion by inspection using the substi-

tution _X0! _X0#u if u is spatially uniform. To a good approximation, the

adiabatic spin torque contribution leads to [135]

d

dt

@Lad

@ _X0

#@Lad

@X0
¼#G(u X0ð Þ: ½4:156%

For the nonadiabatic spin-torque terms, the relevant substitution is

@ t!@ tþ (b/a)u *r. By applying the same analogy to the Gilbert damping

term, the contribution of the nonadiabatic spin torques can be expressed via

the dissipation function [136]

@Wn#ad

@ _X0

¼#bDu X0ð Þ: ½4:157%

By combining these results, the following equation of motion for the

current-driven dynamics of a rigid vortex in a nanocontact is obtained:

G( _X0#u X0ð Þ
! "

þD a _X0#bu X0ð Þ
! "

þ!ℏI
2e

p?
ẑ(X0

R2
0

¼# @U

@X0
:

½4:158%

An illustration of the different forces is given in Fig. 4.14, where a

circular motion of the vortex core around a central potential U(R0) is

±FCPP

Fad

FZ

FG

Fn-ad

v

(a) (b)

Figure 4.14 Schematic illustration of the forces exerted on the current-driven vortex
dynamics in a magnetic nanocontact. (a) The adiabatic Fad and CPP FCPP spin torques
lead to tangential forces, where the sign of FCPP depends on the sign of p?. (b) The
nonadiabatic torques and the Zeeman energy potential give rise to radial forces, Fn#ad

and Fz, respectively.
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assumed and that the in-plane current u flows radially away from the

nanocontact, u R0ð Þ¼ u R0ð Þr̂. The forces associated with Gilbert damping,

FG¼#aD _X0, adiabaticCIP spin torques,Fad¼G(u, and thep? component

of CPP spin torques, FCPP¼#ẑ(X0, are all tangential to the orbit, while

the forces associated with the Zeeman potential, Fz¼#@U/@X0, and

nonadiabatic CIP spin torques, Fn#ad¼bDu, represent radial forces.

In contrast to centripetal motion in Newtonian mechanics, the

gyrotropic nature of the vortex dynamics means that self-sustained gyration

at constant radius is governed by the condition that the net tangential force

vanishes, rather than the net radial force. In other words, it is required that

#G(u X0ð ÞþaD _X0þ
!ℏI
2e

p?
ẑ(X0

R2
0

¼ 0; ½4:159%

which leads to the equation of motion,

G( _X0¼# @U

@X0
þbDu X0ð Þ: ½4:160%

An expression for _X0 can be found by rearranging Eq. (4.160) and substitut-

ing this result into Eq. (4.159), which leads to the following condition for

the steady-state radius of self-sustained gyration,

#Gu R0ð ÞþaD
G

@U

@R0
þ!ℏI

2e

p?
R0

¼ 0: ½4:161%

To obtain this expression, a term proportional to ab has been neglected, as

ab+1 for transition metal ferromagnets of interest.

An explicit expression for the steady-state radius can be found with the

following approximations. First, it has been shown that the Zeeman energy

potential associated with the Oersted–Ampère fields is well described by the

linear functionU(R0)¼k|I|R0 for sufficiently large orbital radii [131]. This

term is linear in the magnitude of the applied current because the magnitude

of the Oersted–Ampère fields depends only on the magnitude of the applied

current, and not its sign. Second, it is assumed that the electron current flows

from the free layer to the reference layer, such that the electron flow in the

film plane is radially outward from the nanocontact. As only a fraction of this

current flows in the free layer [129], the spin-drift velocity can be written as

u(R0)/!0ℏI/(2eR0), where !
0 represents a reduced effective spin polariza-

tion due to this partial current flow. The expression for the steady-state radius

becomes
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R0¼ sgn Ið ÞGk
aD

2e

ℏ
!0p#!0p?ð Þ#1

: ½4:162%

The radius is independent of the applied current, but conditions for its ex-

istence depend on the sign of the current, the sign of G through the vortex

polarization p, and the overall sign of the quantity !0p#!0p?. For example,

in the absence of any CPP contributions (p?¼0), only positive currents

(electron flow from the free to the reference layer) lead to self-sustained

gyration, asGp/p2¼1. This can be understood in terms of the flow of con-

duction electron spins in the film plane, where the outward flow from the

nanocontact gives rise to an outward “pressure” on the magnetic vortex,

preventing it from spiraling into the nanocontact center. In the absence

of CIP spin torques (!0¼0), the condition for self-sustained gyration is

sgn(I)pp?<0. This condition can be understood in terms of the perpendic-

ular polarizer concept in nanopillar oscillators [137–139], where the sense of

rotation of the magnetization vector in the film plane is determined uniquely

by the sign of p? and the current polarity, sgn(I). As the sense of vortex

gyration is given by p, the condition for steady-state gyration is determined

by the product of the sign of these three quantities.

In contrast to the oscillatory spin-wave modes presented in previous sec-

tions, there is no intrinsic threshold current for self-sustained vortex gyration

within the approximations of the rigid vortex model. This feature is a conse-

quence of the Oersted-field-induced Zeeman potential, whose magnitude

scales linearly with the current and the radial position of the vortex. From a

mathematical perspective, the existence of a limit cycle still appears from aHopf

bifurcation, but it involves material parameters, rather than the applied current

itself.Nevertheless, themodel is basedon the hypothesis that a single vortex state

already exists in the magnetic free layer; a finite but different threshold current

may be required to nucleate this vortex state in the first place. Experiments show

that once the nucleation current for vortex oscillations is reached the applied

current can be reduced well below this nucleation current without destroying

the oscillatory state [140,141]. Therefore, in practical terms, the important

threshold current in experimental systems involves the nucleation of the vortex

state, rather than the onset of self-sustained oscillations.

With the steady-state radius given in Eq. (4.162), the vortex gyration

frequency can be deduced from Eq. (4.160) to be

o¼ 1

GR0

@U

@R0
#bDu R0ð Þ

+ ,
/ kI
GR0

; ½4:163%
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where the nonadiabatic correction term, proportional to 1=R2
0, has been

neglected. The gyration frequency varies linearly with the applied current

and is inversely proportional to the radius of gyration. This linear variation

has been reported in a number of experiments [130–133,142–144]. As the

steady-state radius is independent of current, any instantaneous changes

to the applied current will result in an immediate change in the gyration

frequency. This behavior leads to the prospect of fast frequency modulation

using such vortex nanocontact oscillators. Manfrini et al. verified this aspect

experimentally, where it was shown that square-wave variations in the ap-

plied current lead to changes in the frequency over time scales of 20 ns [145].

This figure represents an upper bound for the transition time, which is

limited by the temporal resolution of the experiment. It has been suggested

that this behavior could allow for frequency-modulation techniques using

nanocontact vortex oscillators [146].

5.4. Nanopillar oscillations
In spin-valveormagnetic tunnel junctionnanopillars, the equilibriummagnetic

state is a vortex due to the confined nature of the nanopillar geometry. As in

submicron dots, the vortex state in a nanopillar results from minimizing the

stray magnetic fields at the edges, resulting in a curling structure for the

magnetization. Due to the importance of these boundary conditions, a slightly

different approach is required for describing the vortex dynamics, as the simple

translation of a single rigid vortex, an approximation used to good effect for

nanocontacts, doesnot adequately account for the staticnatureof theedge states.

Consider the circular nanopillar where L denotes the nanopillar radius

and d the free-layer thickness. Ivanov and Zaspel showed that the current-

driven vortex dynamics in nanopillars can be described using a two-vortex

ansatz [147]. The inclusion of the second vortex is analogous to the concept

of “mirror charges” in electrostatics. As such, the dynamics of the physical

vortex requires the dynamics of the fictive two-vortex magnetization

structure to be treated explicitly. This leads to a higher degree of complexity

but the problem remains tractable for realistic geometries where simplifying

approximations can be made.

For a vortex displacement along the x-axis, the two-vortex ansatz

involves the following profile for the azimuthal angle

F x;yð Þ¼ tan#1 y

x#X0

+ ,
þ tan#1 y

x#L2=X0

+ ,
-p
2
; ½4:164%
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where the p/2 factor gives the sense of rotation of the moments in the film

plane. This configuration ensures that there are no magnetic charges at the

edges of the dot. Amore general expression exists for arbitrary displacements

in the film plane, but this simplified form is sufficient to describe the salient

features of the current-driven dynamics.

The magnetic potential U¼UmþUz experienced by the vortex in this

geometry has two contributions. First, the displacement of the vortex core

from the dot center leads to the appearance of volume magnetic charges. To

the fourth order in the core displacement, it is found that this contribution is

given by [147]

Um R0ð Þ/ 1

4
m0M

2
s

d2

L2
2:83dR2

0þ60:53
R4
0

L

+ ,
: ½4:165%

Second, the Oersted–Ampère field generated by the applied current I gives

rise to a current-dependent Zeeman energy. Assuming that the field within

the nanopillar is given by that of an infinite cylindrical conductor, BOe(r)¼
m0Ir/(2pL2), the Zeeman energy is found to be [148]

Uz R0ð Þ/ 2m0Msd Ij j
15L

R2
0: ½4:166%

Thus, the total energy U¼UmþUz can be approximated by the quartic

function

U R0ð Þ¼ 1

2
a2þ azjI jð ÞR2

0þ
1

4
a4R

4
0; ½4:167%

where a2, az, and a4 are positive coefficients related to the two energy terms.

The current flow is almost exclusively perpendicular to the film plane in

nanopillars, so only CPP spin torques are important in this geometry. As in

the case for nanocontacts, the p|| component of the CPP torques only lead to

a constant force, which cannot provide the necessary compensatory force

required for self-sustained oscillations. The only source of negative damping

for vortex dynamics in nanopillars is therefore the p? component.

Consider a configuration in which the reference-layer magnetization is

uniform and the current density flowing through the nanopillar, J(r)¼
I/(pL2), is also uniform. From Eq. (4.57), the p? component of the dissipa-

tion function is found to be

FCPP¼#!0
ℏ
e

I

pL2
p?

ð
d2x _F sin2Y: ½4:168%

275Spin-Torque Oscillators



With the two-vortex ansatz, the resulting force due to the CPP spin tor

ques is

@FCPP
@ _X0

¼ !ℏI
e

p?
ẑ(X0

L2
: ½4:169%

This force possesses the appropriate symmetry to compensate Gilbert

damping, as illustrated in Fig. 14.

The condition for self-sustained gyration is determined by setting the

sum of the two nonconservative forces to zero:

aD2 _X0þ
!ℏI
e

p?
ẑ(X0

L2
¼ 0; ½4:170%

where D2 denotes the value of the damping tensor evaluated with the two-

vortex ansatz. Using the conservative equation (Eq. 4.147), an expression for
_X0 can be found and substituted into Eq. (4.170), which yields

#aD2

G

@U

@X0
# !ℏI

e
p?

+ ,
1

L2
X0¼ 0: ½4:171%

By substituting the magnetic potential and assuming pure circular gyration, a

condition for a steady-state radius is obtained:

aD2 a2þ azjI jð ÞR0þ a4R
3
0

- .
þGesIp?R0¼ 0; ½4:172%

where es¼ !ℏ= eL2ð Þ. Therefore, the steady-state radius is either the trivial
solution, R0¼0, or else it satisfies

R2
0 ¼#GesIp?þaD2 a2þ azjI jð Þ

aD2a4
: ½4:173%

As the coefficients ai, es, and aD are always positive, physical solutions forR0

exist only for cases in which the product pIp?<0, where the vortex polarity

p enters through the gyrovector, G/p. The condition for a finite steady-

state radius defines the threshold current

I ¼ aD2a2
Gp?j js#aD2az

: ½4:174%

In contrast to the dynamics in nanocontacts, one observes that vortex

oscillations in nanopillars are subject to a finite threshold current. Once the

steady-state radius is known, the gyration frequency can be obtained from

the conservative part of the Thiele equation (Eq. 4.160),
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o¼ 1

GR0

@U

@R0
¼#esp?

aD2
I : ½4:175%

As with dynamics in a nanocontact system, a linear frequency variation with

applied current is predicted for vortex oscillations in a nanopillar [149]. An

extension to this formalism has been undertaken by Dussaux et al., who in-

cluded an additional nonlinearity in the damping term [150].

An example of current-driven vortex oscillations calculated by micro-

magnetics simulations is shown in Fig. 4.15, where the gyration frequency

and radius are presented as a function of applied current. The oscillations

appear at a threshold current density, below which only damped gyrotropic

motion is observed. Above threshold, the orbit radius increases like
ffiffi
I

p
,

which is consistent with the analytical theory presented earlier. However,

the frequency variation appears quite different from the linear current de-

pendence that is expected. Khvalkovskiy et al. contend that parameters such

as es and aD2, obtained using the Thiele approach, may exhibit large differ-

ences compared with those extracted from simulation. It is argued that the

rigid-vortex approximation, which underpins the Thiele approach, does not

correctly account for the dynamics of the edge magnetization states in a

nanopillar, which are observed to remain largely unaffected by the

gyrotropic motion in simulations.
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Figure 4.15 Characteristics of current-driven vortex oscillations in nanopillars, com-
puted with micromagnetic simulations. The gyration frequency f and steady-state ra-
dius R0 are shown as a function of applied current density J. The oscillations appear
above the threshold current of Jth/4.9(106 A/cm2. The geometry simulated is shown
in the inset. After Fig. 2 of Ref. [148]. © American Physical Society.
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Experiments employing scanning transmission X-ray microscopy have

provided direct observations of current-induced vortex oscillations in

nanopillars [125]. The experiments suggest that the micromagnetic state

in the free layer can exhibit large differences from the structure assumed

in the rigid vortex model. More importantly, self-sustained gyration is ob-

served for a purely in-plane polarizer (p?¼0, 0<pk.1), a scenario that is

prohibited by the theoretical treatment described earlier. However, simula-

tions have shown that a nonuniform polarizer can allow for self-sustained

oscillations with in-plane CPP torques alone [151], offering a possible ex-

planation for the experimental results. In elliptical nanopillars, experiments

and simulations show the possibility of rotating vortex–antivortex pairs

[152]. Further studies are therefore required to shed more light on the

micromagnetic structure in such confined geometries.

Another issue concerns the spectral linewidth of vortex oscillators. A sto-

chastic theory for vortex oscillations has been developed by supplementing

stochastic terms to the Thiele equation, where similar amplitude-phase cou-

pling leading to inhomogeneous broadening has been predicted [153].

While the general features of this stochastic theory does not differ much

from the description presented in Section 4, there is a large quantitative dis-

crepancy between experimental observations and theoretical predictions for

the spectral linewidths. For gyration frequencies on the order of 100 MHz,

theory predicts linewidths in the range of 10 kHz, while experimental values

are typically in the range of 1 MHz. Furthermore, studies have shown that

the linewidth saturates below temperatures of 100 K [154]. One possible ex-

planation for such behavior involves inhomogeneities in the magnetic film.

Experiments on thin film dots have shown that the vortex gyration fre-

quency can be strongly affected by material defects [155,156]. By translating

the equilibrium position of a vortex using in-plane fields, it was shown that

variations of a few hundred megahertzs in the gyration frequency is possible.

Significant correlations between the microstructure, as determined from

atomic force microscopy, and the spatial variations in the gyration frequency

were also reported. These results highlight the importance of spatial fluctu-

ations in the magnetic properties for vortex dynamics, which could lead to

additional athermal contributions to the spectral linewidth in such systems.

5.5. Core reversal and relaxation oscillations
In Fig. 4.15, a second critical current is observed, around J/6.5(107 A/

cm2, above which the self-sustained gyration ceases to exist. This critical

current corresponds to the point at which the critical core velocity is
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reached, where the core polarity changes sign and consequently the sense of

gyration. As a result, the condition for self-sustained oscillations is no longer

satisfied for the opposite core polarity, which results in the gyrotropic mo-

tion being rapidly damped.

The process of core reversal initially begins with the deformation of the

vortex core. The deformation occurs because the static vortex core profiles,

satisfying Eqs. (4.138) and (4.141), are only approximate solutions to the dy-

namical system when the core is in motion. A similar issue arises for domain

wall motion, where a mere translation of the static magnetization profile

does not satisfy the Landau–Lifshitz equations of motion, but deformations

to the static micromagnetic structure are necessary to correctly describe the

dynamics [157,158]. As the vortex core moves, a “dip” structure, rep-

resenting a small component of out-of-plane magnetization oriented anti-

parallel to the core magnetization, appears in the vicinity of the vortex

core [159]. When the amplitude of this dip reaches a threshold level, the

dip leads to the nucleation of a vortex–antivortex pair with core polarities

opposite to the initial vortex state, and annihilation between the antivortex

and initial vortex occurs [160–165]. This process leads to energy dissipation

through spin waves [160,161,166] and the resulting state consists of a vortex

with a core polarity opposite to that of the initial state. As the dip amplitude

depends very much on the core velocity, core reversal occurs when a critical

velocity is reached. For permalloy films, this critical velocity is found to be

approximately 300 m s#1.

A number of theoretical and experimental studies have shed light on the

phenomenon of vortex core reversal. Yamada et al. showed that core reversal

can be initiated in a micron-sized dot by driving the vortex gyrotropic mo-

tion into resonance using in-plane currents [163]. Van Waeyenberge et al.

used bursts of alternating fields, where the vortex motion was tracked using

time-resolved scanning transmission X-ray microscopy [167]. Switching of

core polarity using field pulses has been confirmed in simulations [168] and

the use of tailored pulse shapes [169,170] or rotating [171] applied fields

reported. In magnetic dots, a reversal mode involving edge solitons has been

found usingmicromagnetics simulations [172]. Vansteenkiste et al. used such

imaging techniques to study the deformation of the vortex core when it is

driven to core reversal using an alternating magnetic field [173]. The dip

structure has also been shown to be more pronounced in the presence of

in-plane spin torques, where deformation to the core can occur even for

static vortices [174]. Core switching induced by spin-wave scattering has

also been demonstrated experimentally [175] and theoretically for magnetic

dots [176].
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An interesting phenomenonoccurs in nanocontact systemswhen the vor-

tex gyration is driven to core reversal. As the dominant contribution to spin-

torque-driven gyration comes from the CIP terms in this geometry, the only

condition for self-sustained gyration involves the current polarity, where an

outward flow of spins from the nanocontact is required to prevent the vortex

from spiraling toward the nanocontact center. Self-sustained gyration for

both core polarities is therefore possible. Consider the scenario in which

the critical velocity is first attained in the nanocontact system, for example,

following an increase in the gyration frequency brought about by an increase

in the applied current. Through the process of vortex–antivortex pair nucle-

ation and annihilation described earlier, the core reversal is accompanied by a

slight decrease in the orbital radius just after reversal, followed by the core

spiraling outward toward the steady-state radius with the opposite sense of

gyration. But the steady-state radius is never attained because the critical

velocity is always reached first, leading to another core reversal process. This

sequence of events then repeats periodically.

Such dynamics are characteristic of relaxation oscillations [15,177]. These

are periodic processes involving the slow growth of some quantity (e.g., en-

ergy) that is rapidly discharged when a threshold is reached. Relaxation os-

cillators are characterized by two distinct time scales: a slow time scale

representing the gradual accumulation and a fast time scale representing

the sudden discharge. For this reason, these oscillators are also referred to

as threshold oscillators or integrate-and-fire oscillators. For the dynamics de-

scribed earlier, the vortex charges in Zeeman energy (associated with the

Oersted field) as it spirals out toward the steady-state orbit, and discharges

this energy through the spin-wave emission when the core reverses its po-

larity. Therefore, periodic core reversal in a nanocontact system represents a

form of relaxation oscillation.

Petit-Watelot et al. showed that such dynamics occur in nanocontacts

above a threshold current [178]. Below the threshold, the usual gyrotropic

motion is observed, where the vortex gyration around the nanocontact leads

to a linear variation in the oscillation frequency as a function of applied cur-

rent. As the current is increased above the threshold, a number of branches

are observed in the power spectrum, which gradually fan out from the cen-

tral frequency and settle into distinct branches over different current inter-

vals, as shown in Fig. 4.16. These branches are a result of frequency

modulation, due to periodic core reversal, on the gyrotropic motion of

the vortex around the nanocontact. The presence of clear plateaus, at

fmod/f¼1/5, 1/3, and 1/2, for example, is indicative of a phase-locking phe-

nomenon between the gyrotropic motion and the relaxation oscillations. It
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has been shown that the coexistence of gyrotropic and relaxation oscillations

gives rise to commensurate and incommensurate states, where the plateau

structure in Fig. 4.16 is related to a Devil’s staircase [178,179].

6. OTHER NONLINEAR PHENOMENA

6.1. Phase-locking and synchronization
From a technological perspective, spin-torque oscillators are interesting

for applications in mobile telecommunications because of their compact

size and their potential for frequency tunability. However, most experi-

mental systems studied to date have two important shortcomings. First,
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Figure 4.16 Current dependence of the power spectrum in nanocontact vortex oscil-
lations showing modulation due to periodic core reversal. (a) Map of the experimental
PSD. (b) Ratio of themodulation and central frequencies as a function of applied current,
where well-defined plateaus are seen over different current intervals. After Fig. 2 of Ref.
[178]. © Nature Publishing Group.
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the coherence of spin-torque oscillators is typically poor at room tempera-

ture, where the quality factor Q¼ f0/Df, defined as the ratio between the

oscillation frequency and the linewidth, takes values between 100 and

104. In contrast, quartz oscillators commonly used in microelectronics pos-

sess typical Q values of 106 and above. Second, the output power of spin-

torque oscillators is comparatively weak for applications. For spin valves, the

total integrated power in the current-driven mode is typically in the range of

0.01–1 nW [13,62], while oscillators based onmagnetic tunnel junctions can

reach the range of 0.1–1 mW[124,180,181]. Attempts to address these short-

comings can involve either improvements in physical properties, for exam-

ple, engineering larger magnetoresistance values or promoting specific

oscillation modes, such as vortex gyration in tailored geometries

[124,126], or by applying established methods for oscillators such as

phase-locking and synchronization.

Phase-locking refers to the entrainment of the oscillator phase by an ex-

ternal driving force. As the oscillator phase is “free” in the self-sustained re-

gime, it is not subject to a restoring force along the limit cycle and is

therefore susceptible to phase noise, as the discussion in Section 4 has shown.

If an external driving signal is applied to the oscillator, the oscillator phase

can become locked to the phase of the driving signal, with a specific rela-

tionship between the two [182]. In this case, the oscillator phase is no longer

free, but substantial improvements can be made in reducing the oscillator

noise. Electrical circuits like phase-locked loops employ a feedback mech-

anism in combination with phase-locking to improve the coherence of an

oscillator [106]. For potential applications, it is therefore important to iden-

tify the useful driving forces for spin-torque oscillators and the conditions

under which phase-locking is achievable.

For experimental systems of interest, the main driving mechanisms in-

volve applied fields through the Zeeman interaction or currents through

spin-transfer torques [183]. One of the first experimental demonstrations

of phase-locking in spin-torque oscillators was conducted on magnetic

nanocontacts, where it was shown that locking is possible by superimposing

a low ac driving current on top of the dc current above threshold [184]. De-

tailed experiments on spin-valve nanopillars revealed the efficiency of phase-

locking to a microwave current, where it was shown that the Adler model

could be extended to account for the locking interval observed [185].

Injection-locking to microwave currents has also been observed for

current-driven modes in magnetic tunnel junctions [186] and vortex oscil-

lations in nanopillars [187,188]. In the latter, experiments have also shown
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that phase-locking to a microwave current is more efficient at twice the gy-

ration frequency [189]. Micromagnetic simulations show that such locking

mechanisms are robust in the presence of thermal fluctuations [190], but dy-

namical effects leading to phase slips can be important [191]. For nano-

contact oscillators driven by external ac fields, hysteresis in the locking

interval [192] and fractional synchronization [193,194] have been observed.

The transient dynamics associated with phase-locking has also been studied

theoretically [195].

In a systemwhere several oscillators interact with one another, a process of

mutual phase-lockingor synchronization can takeplacewithout the requirement

of an external driving signal. The nature of the synchronized state depends on

a number of parameters, such as the strength and range of the interactions,

and the distribution of the oscillator frequencies [177,196,197]. Indeed,

synchronization is a nonlinear phenomenon that is prevalent in physical,

chemical, and biological systems, with prominent examples including the

collective flashing of firelies, pacemaker cells in the heart, and electrical

power grids.

The first experimental demonstration of synchronization in spin-torque

oscillators was achieved for double nanocontact systems [72,75]. In the sys-

tems studied, the double nanocontact structure is patterned onto a contin-

uous spin-valve multilayer, with the applied spin torques leading to two

well-separated regions of the free layer to be driven to self-oscillation. Syn-

chronization was observed when the two oscillator frequencies were made

sufficiently close, which was attained by ramping the applied current

through one nanocontact while maintaining a constant current through

the other. An example of the experimental results is shown in Fig. 4.17,

where the map of the spectral density exhibits a single frequency branch

within the locking interval, corresponding to a regime of large power out-

put, with two distinct branches of the nonsynchronized state outside this in-

terval. It has been shown that the exchange of emitted spin waves from the

nanocontact is the primary coupling mechanism between the two oscillators

[73,74,198–200].

A number of other mechanisms for synchronization are possible. Grollier

et al. showed through simulations that mutual phase-locking is possible be-

tween several nanopillars connected electrically in series, where the coupling

occurs through the induced variations in the shared current that flows

through the circuit [201]. Calculations also show that such behavior should

be possible in magnetic tunnel junctions [202] and more complex synchro-

nized states have been observed in subsequent studies of serially connected
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oscillators [203]. The roles of the electrical circuit configuration [204] and

the stability of the synchronized state [205] have also been examined theo-

retically. Another scenario involves vortex oscillations in multiple

nanocontacts. In experiments on a systemwith four nanocontacts, organized

in a square arrangement on a continuous multilayer, Ruotolo et al. showed

that the vortex gyration around each nanocontact can be synchronized

through mediating antivortex structures separating each vortex [132]. In

the experimental spectra, four distinct peaks are observed outside the current

locking interval, while only one peak is present within this interval.

6.2. Mode stability and hopping
The theoretical framework for spin waves and vortices given in Sections 3

and 5, respectively, is based on the underlying assumption that the excited

mode is stable at all levels of supercriticality. However, a number of studies

have shown that mode instabilities can occur under certain experimental

conditions.
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Figure 4.17 Synchronization in double nanocontact oscillators. (a) Map of the
power spectral density of nanocontacts A and B with the locking interval indicated.
(b) Power spectrum at an applied current of 8.65 mA, below the locking interval.
(c) Power spectrum for an applied current of, or within, the locking interval, which
exhibits large power increase and dramatic linewidth narrowing. After Fig. 2 of Ref. [72].
© Nature Publishing Group.
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A possible consequence under large driving currents is a change in the

nature of the oscillatory mode. In the macrospin approximation, for exam-

ple, it is predicted that in-plane precessionmodes at low currents give way to

stable out-of-plane precession modes at high currents [206]. This has been

confirmed in experiments and simulations on spin-valve nanopillars, where

large-amplitude coherent spin-wave modes have been observed [207].

However, the stability at high currents is not a universal feature [208]. In

other experiments on similar nanopillars, large currents lead to loss of coher-

ence and mode power [63]. These results highlight the importance of non-

linearities associated with the spin-wave modes excited [209–211].

In experiments on spin-valve nanopillars [212] and magnetic tunnel

junctions [213,214], time-domain measurements reveal regimes in which

random transitions between distinct modes occur. The modes observed pos-

sess different frequencies, which are separated by intervals that exceed the

linewidth of each individual mode. These studies show that the coherence

of spin-torque oscillators could in large part be limited by thermally activated

(and therefore stochastic) transitions between distinct modes rather than the

thermal noise processes discussed in Section 4. Similar transitions have been

observed in nanocontact systems. For high-frequency oscillations, simula-

tions have revealed transitions between two kinds of localized bullet modes

[215]. In experiments on low-frequency excitations, hopping between two

modes has been reported for certain intervals of applied fields [144].

6.3. Droplet excitations
For certain material combinations in the thin film geometry, such as ultrathin

CoFeBcappedwithMgO[216] orCo/Pt [217] andCo/Ni [218] superlattices,

a strong uniaxial anisotropy oriented perpendicular to the film plane appears.

This anisotropy is an interface effect that originates in induced changes of the

electronic band structure.Experiments onmagnetic nanocontactswithout-of-

plane magnetized Co/Ni free layers have demonstrated the possibility of driv-

ing large-angle oscillations using spin torques [219].

For current-driven dynamics in such geometries, a novel kind of soliton

excitation—the dissipative droplet soliton—has been predicted to exist

[220,221]. The soliton represents a dissipative version of a soliton mode

originally studied by Ivanov and Kosevich, who considered the bound state

of a large number of magnon modes in a system with uniaxial anisotropy

[222]. For a free layer with magnetization oriented in the þz direction,

the soliton consists of a profile with partially reversed magnetization along
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the z-axis in the nanocontact region and large-angle precession, with cone

angles reaching 904, at the boundary of the soliton [220]. The internal struc-

ture of the mode depends strongly on its oscillation frequency, which is well

below that for ferromagnetic resonance.

In addition to the balance between nonlinearity and dispersion for con-

servative solitons, dissipative solitons also depend on the balance between

energy gains and losses, as manifested by Gilbert damping and spin torques

in magnetic nanocontacts. As such, its existence and dynamics rely on a del-

icate balance between the conservative and nonconservative torques ap-

plied. Hoefler et al. have shown theoretically how such droplet solitons

can be generated and propagated in magnetic nanocontact systems [221].

By combining soliton perturbation theory withmicromagnetics simulations,

the authors show how such solitons can be controlled with external mag-

netic fields, with proposed schemes for propagating the solitons in contin-

uous films. This work highlights some possible schemes for experimental

detection of these nonlinear objects.

7. FINAL REMARKS

Intense research efforts over the past decade have established spin-

torque oscillators as nanoscale systems in which rich nonlinear physical phe-

nomena can be studied. Spin torques provide a means of driving magneti-

zation dynamics to levels of nonlinearity that are not possible with magnetic

fields alone. The central theme of this chapter has involved self-sustained

magnetization oscillations in different geometries, with possible modes be-

ing linear and nonlinear spin waves, and topological solitons such as vortices.

Through the combination of the Zeeman interaction and magnetic nonlin-

earities, the frequency of spin-torque-driven oscillations can be varied over

large frequency ranges through changes in applied fields and currents,

leading to many proposals for constructing nanoscale frequency-tunable

electrical oscillators based on such systems. The nonlinearities also play an

important role in determining the coherence of oscillations at finite temper-

atures, where strong amplitude-phase coupling can lead to significant broad-

ening of the power spectra. Attempts to improve the noise characteristics of

such oscillators include targeting the excitation of specific modes and apply-

ing established techniques such as phase-locking to external signals and syn-

chronization between several oscillators, phenomena which draw upon a

large body of work from other fields of nonlinear physics. Given the intricate

balance between conservative and nonconservative torques that underpin
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the dynamics, spin-torque oscillators continue to offer unique opportunities

to explore strongly nonlinear dynamics on the nanoscale, as testified by the

recent predictions on dissipative droplets. Open questions on both the fun-

damental and applied levels, such as noise-driven transitions, the role of ma-

terial imperfections, excitations in strongly coupled systems [223], and the

influence of spin-caloric effects [224], for example, should continue to stim-

ulate investigations into the dynamical properties of spin-torque oscillators.
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