L3 PAPP 2010-2011

Electromagnétisme II

Durée: 3 heures.

Aucun document n'est autorisé. Les calculatrices sont interdites.

La partie "questions de cours" compte pour le 60% de la note finale. Les constantes et données utiles sont rassemblées à la fin de l'énoncé. Attention : impression recto/verso pour sauver la planète

I. Questions de cours

Magnétisme macroscopique

- **1. a.** Définir l'aimantation **M** d'un milieu magnétique, en fonction du moment dipolaire magnétique. Donner son unité.
- **2. a.** Donner l'expression du courant volumique , \mathbf{j}_{v} , et du courant surfacique , \mathbf{j}_{s} , associés à une aimantation \mathbf{M} .
 - **b.** Définir l'excitation magnétique **H** en terme du champ magnétique **B** et de l'aimantation **M**.
 - c. Exprimer l'équation de Maxwell-Ampère (locale) en fonction du champ H.
- **3.** Exprimer les relations de passage entre deux milieux magnétiques, sans courants libres, pour les champs **B** et **H**.
- **4. a.** Comment est définie la susceptibilité magnétique, χ_m , dans le cas d'un milieu linéaire homogène et isotrope (LHI) ?
 - **b.** Définir le diamagnétisme et le paramagnétisme ; citer des exemples de substances dans chaque cas et donner l'ordre de grandeur de χ_m .
 - **c.** Proposer une expérience permettant de distinguer ces deux types de substances, faire un schéma.
- **5. a.** Pour $M = 10^3$ S.I. et B = 1 T, comparer en ordre de grandeur $\mu_0 M$ et B. En déduire une relation simplifiée entre **H** et **B**. En déduire une relation simple entre **M** et **B**.
 - **b.** Pour quel type de milieu cette relation n'est-elle plus valable ?

Magnétisme microscopique

- **6. a.** Dans le cadre du modèle de Bohr de l'atome d'hydrogène, calculer le moment cinétique σ et le moment magnétique orbital m associés à l'électron. Quelle est la relation entre les deux ?
 - **b.** Comment se généralise cette relation dans le cas d'un moment magnétique de spin **s** ?
 - **c.** Décrire l'expérience historique qui a démontré l'existence du spin.
- **a.** Dessiner l'allure de la courbe M(H) d'un matériau ferromagnétique pour une première aimantation et pour les cycles d'aimantation successifs. Quelle est l'interprétation de l'aire de la

courbe?

- **b.** Donner une interprétation microscopique de l'allure des ces courbes.
- **c.** Qu'appelle-t-on un ferromagnétique doux ? un ferromagnétique dur ? Indiquer des exemples d'utilisation dans chaque cas.

3. Milieux diélectriques

- **8. a.** Exprimer la charge volumique ρ , la charge surfacique σ , et le courant volumique \mathbf{j}_{v} , associées à une polarisation \mathbf{P} .
 - **b.** Définir les notions de diélectrique et de conducteur en régime statique.
- **9. a.** Définir le champ de déplacement électrique, **D**, en fonction du champ électrique, **E**, et de la polarisation, **P**.
 - **b.** Écrire l'équation de Maxwell associée au vecteur **D**. Exprimer les relations de passage, sans charge libre, d'un milieu diélectrique à l'autre en fonction des champs **E** et **D**.
- **10.** Définir la susceptibilité diélectrique, χ_e , dans le cas d'un milieu linéaire homogène et isotrope (LHI).

II. Exercices

1. Paramagnétisme de spin

On considère un gaz quantique parfait monoatomique et on suppose que ses atomes possèdent un spin total s=1/2 et que la contribution orbitale au moment cinétique total est nulle. Le moment magnétique est donc $\mathbf{M} = -g \, \mu_B \, \mathbf{S} / \, \hbar$, où g=2 est le facteur de Landé et μ_B est le magnéton de Bohr. Le spin \mathbf{S} est un moment cinétique intrinsèque et S_z est quantifié. L'énergie magnétique de chaque atome dans un champ $\mathbf{B} = \mathbf{B} \, \mathbf{u}_z$ extérieur est $\mathbf{W} = -\mathbf{B} \cdot \mathbf{M}$.

- **a.** Le gaz compte N atomes à le température T. Exprimer les moyennes N_+ d'atomes dans les états de spin $\pm 1/2$.
- **b.** Donner l'expression de l'aimantation en fonction de B, T et de constantes fondamentales. Tracer l'allure de la courbe M(B).
- **c.** Grâce à un développement limité à l'ordre o(B), donner une expression de la susceptibilité magnétique, χ_m , du milieu. Indiquer la gamme de températures pour laquelle ce développement limité est justifié, faire l'application numérique dans le cas où B = 1T, T = 300K et N = 1mole.
- **d.** Dans le cas d'un milieu dense le champ magnétique vu par chaque atome est corrigé par le champ local généré par les autres atomes. On remplace donc **B** par un champ local effectif $\mathbf{B}_{\text{local}} = \mathbf{B} + \kappa \mathbf{M}$, où \mathbf{M} est l'aimantation et κ un nombre positif. Comment la courbe $\mathbf{M}(\mathbf{B})$ est-elle modifiée ? Montrer que la susceptibilité s'écrit désormais

$$\chi_m = \frac{C}{T - T_C}$$

donner l'expression de C et de T_{C} .

2. Effet Meissner en supraconductivité

- a. Rappeler ce qu'est l'effet Meissner en supraconductivité.
- **b.** La dynamique des électrons dans un supraconducteur, soumis à un champ magnétique **B** et à un champ électrique **E**, est décrite par l'équation de Drude-Lorentz:

(1)
$$m_e \frac{d\vec{v}}{dt} = -e\vec{E} - e\vec{v} \wedge \vec{B} - \eta \vec{v}$$

où η est un coeffient de frottement. La théorie de London nous dit qu' une partie des électrons (de densité n_s) dans un supraconducteur sont des *supra-électrons* qui :

- i) n'ont pas de frottement, donc $\eta = 0$
- ii) transportent un supracourant $\vec{J}_s = -e n_s \vec{v}_s$

A partir de l'équation de Drude-Lorentz (1), démontrer la première équation de London

$$(2) \quad \frac{d\vec{J}_s}{dt} = \frac{n_s e^2}{m_e} \vec{E}$$

On négligera dans la force de Lorentz (1) la contribution magnétique. Pourquoi ceci est-t-il en général une bonne approximation ?

c. En utilisant l'équation de Maxwell-Faraday (locale) montrer la relation suivante:

(3)
$$\frac{\partial}{\partial t} (rot \vec{J}_s + \frac{n_s e^2}{m_e} \vec{B}) = 0$$

Au vu de l'équation (3), les frères London ont posé par hypothèse :

(4)
$$rot \vec{J}_s + \frac{n_s e^2}{m_e} \vec{B} = 0$$

Ce qui nous donne la deuxième équation de London.

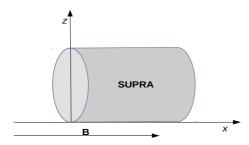
e. A partir de l'équation (4), en utilisant l'équation de Maxwell-Ampère $rot \vec{B} = \mu_0 \vec{J}_s$ (valable dans l' hypothèse qu'il y a seulement des supracourants) démontrer que $\Delta \vec{B} = \frac{1}{\lambda_L^2} \vec{B}$ où on introduit la quantité λ_L définie par :

$$\lambda_L^2 = \frac{m_e}{\mu_0 n_s e^2}$$

On utilisera la relation $rot(rot \vec{A}) = rot(\nabla \cdot \vec{A}) - \Delta \vec{A}$, valable pour tout vecteur **A**.

f. En supposant que le champ magnétique $\mathbf{B} = \mathbf{B}(\mathbf{z}) \mathbf{u}_{x}$ ne dépend que de \mathbf{z} (comme dans la figure

ci-dessous), simplifier l'équation précédente, et la résoudre.



Tracer l'allure de B(z) en fonction de z.

g. Sachant que dans les métaux supraconducteurs, un ordre de grandeur typique de n_s est $n_s \simeq 10^{28}$ m⁻³, estimer la valeur de λ_L . Conclure sur le champ magnétique à l'intérieur du supraconducteur et sur l'effet Meissner, et donner une interprétation physique de la longueur λ_L .

Constantes et données utiles :

$$\begin{split} &\mu_0 = 4\pi \ 10^{-7} \ S.I. \\ &\mu_B = 9.3 \ 10^{-24} \ J/T \\ &k_B = 1.38 \ 10^{-23} \ J/K \\ &e= -1.601 \ 10^{-19} \ C \\ &m_e = 9.109 \ 10^{-31} \ Kg \\ &N_{avo} = 6.022 \ 10^{23} \end{split}$$

$$\nabla \cdot \vec{A} = \operatorname{div} \mathbf{A}$$

$$\Delta \vec{A} = \Delta \vec{A}_x \vec{u}_x + \Delta \vec{A}_y \vec{u}_y + \Delta \vec{A}_z \vec{u}_z$$

$$\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$$