‘. . !‘ a ,

o kg u‘,'ﬂélt ﬂ‘ 5"
SPARSE REPRESENTATIONS




SPARSE REPRESENTATION — ATSI

PRESENTATION

» Mail: matthieu.kowalski@universite-paris-saclay.fr

» Web site: http://hebergement.universite-paris-saclay.fr/mkowalski/
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REMINDER
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FOURIER

» From time representation to frequency
- Spectral analysis : frequency content of a function (think about musical notes)
- Measure the similute (correlation, angle) between pure (complex) sine and a signal

- Sines are eigen signal of time invariant linear systems (filters)
- Fourier analysis computes the correlation between the signal s(7) and a pure (complex) sine of frequency v:
(s(t),€,(1)), with e(t) = e*™
» Limitation of Fourier analysis

- We obtain a pure frequency content from a pure temporal content

- What is the difference between a sum of sine, and a succession of sine ?
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SHORT TIME FOURIER TRANSFORM (STFT)

» Idea: perform a local spectral analysis of the signal thanks to a sliding window

Let w(?) be a real smooth window localized around 1 = 0. Let the time-frequency atoms

12mut

@, (1) = w(t —1)e

The stft transform of a signal x(#) computes the correlation between x(7) and the time-frequency atoms ¢_ (1) = w(7 — 7)e!?™,

+00
X(z,v) = (x(1), @, (1)) = { x(Ow(t — 7)e 2™ dt

> Itis a time-frequency transform

» Window choice: Heisenberg'’s uncertainty principle

+00 p+0
y Itisinvertible: x(z) = [ J X(z, v)w(t — 7)e*™*drdy

— OO0

» We have energy preservation
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EXAMPLE: GLOCKENSPIEL

Clean signal
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CONTINUOUS WAVELET TRANSFORM

» Idea: be sensitive to irregularities instead of oscillations

Let w(7) be an admissible "mother" wavelet, and its the dilated and translated version

W, (t)—il/f(t_b)
a,b \/E .

The continuous wavelet transform is given by:

| B e t—b
Ca,b) = (x(1), y, (1)) = —J x(Dy (
ad J—o

» |tis a times-scale transform

. . [ (T[T t—b\ da db
y ltisinvertible: x(7) = — X(a, b))y

2
Cl// a a

— OO0

» We have energy preservation



[Frequency
Frequency
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FROM CONTINUOUS TRANSFORM T0 DISCRETE TRANSFORM

» First idea: construction of orthogonal basis

» No STFT orthogonal basis (Balian-Low theorem)

» Time-frequency orthogonal basis: MDCT

» Time-scale orthogonal basis: multi-resolution analysis and dyadic wavelets

» Alternative to orthogonal basis ?
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EXAMPLE

1 r=k

, Letthe Kronecker basis A = {50(1), coos 5N_1(f)} , (1) = {() t £k

|
. Let the Fourier basis & = {eo(t), s eN_l(t)}, €,(1) = o2yt
JN

» Let x(?) = 0,(¢¥) + €,(7)
» x needs N coefficients in A, and N coefficients in & for a perfect representation
» X needs only 2 coefficients in & = A U & for a perfect representation

» < is not an orthogonal basis (and is often called a "dictionary")
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FRAME: DEFINITION

» A frame is a system of discrete representation where inversion is stable

» Let a dictionary U = {qon(t), @, (1) € Lz(lR)} (@, (1) being called a atom of ). U is a frame of
L*(R) iff it exists two constant A, B > 0 such that for all f € L*(R)

A< Y [Gwo.o.0)|” < BIAP

n=—~oo

» If A = B, the frame is a tight-frame
» f A =B =1 the frame is a Parseval frame

» fA=B=1and||¢,| =1 Vn,the frame is an orthogonal basis
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FRAME: ANALYSIS AND SYNTHESIS OPERATORS

» Analysis operator @*

o* : LX(R) » £%(2)
fit) = @*f = {{fD). 9, (0) } _,

The coefficients {(f(t), qnn(t))}nez are called the analysis coefficients of f(7)

» Synthesis operator @

d : A7) - LA(R)

+00
a— Oa = Z a,, (1)

The coefficients a, are called synthesis coefficients of f(¢)
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FRAME: THE FRAME OPERATOR

» The analysis and synthesis operators are adjoint

» The frame operator

R =00 : Y (f(1),9,(0)p, ()

, We have f(1) = R(f) = Z‘O (f(1), @, (1)@, (t) iff the frame is a Parseval frame

n=—~od
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FRAME: THE DUAL FRAME

> Let D = {(pn(t), @, (1) € Lz(lR)} be a frame with constants A, B. The dual frame of & is given by

D ={p,) =R e}

» Jis also a frame such that

+ 00

| - 2 1
—IAZ < ), [0, 50) | <—-IA1

n=—a~od0

+00 +00
, We havef() = ) (£@, 0,0 = Y (f0,0)p,0)

n=—~oo n=—~oo

|
y It D is a tight-frame, then @, (1) = X%(t)
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FRAME: EXAMPLES

» An orthogonal basis is a Parseval-Frame

» An union of 2 orthogonal bases is a tight-frame with constant A = 2

» An union of K orthogonal bases is a tight-frame with constant A = K

» In finite dimension C¥, every matrix U € C*" such that rank(U) = M is a frame

» Moreover, it UU* = Aldy,, then U is a tight-frame with constant A
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GABOR FRAME IN FINITE DIMENSION

» Let x[7] € R!, then one can define the full STFT with the real, normalized, analysis window w/[]

T—1
X|t,v] = Z x[flw[t — t]e "7 forall 7,v = 0.(T—-1)
=0
» Moreover, we have
T—1 T—-1
=) ) Xlz,vlwlt — 7]
=0 v=0

» Very redundant: 77 time-frequency coefficients
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DISCRETE GABOR FRAME IN PRACTICE

» Let x[7] € R! and Let w[f] € R” be a real, normalized, analysis window (with L < T)

» Lett,, 1, € N and let the Gabor atoms @, It € R

L iZJZLLt
T1 € Y0
Ly

@, It =w [r

» Usual choices are v, = 1 (FFT of size L) or v, = 2 (FFT of size 2L), and 7, = 2 (overlap of 50 %
between 2 windows) or t, = 4 (overlap of 75 % between 2 windows)

» The dual frame is still a Gabor frame, with the dual window w()



SPARSE SYNTHESIS
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FROM ANALYSIS TO SYNTHESIS

» Letx[f] € Rland 9 = Lo, |11 }27:0 be an over complete dictionary (N > T)

» Let ® € C'" the matrix associated to the dictionary (the synthesis operator). The k-th column of
D is then the atom ¢,

» The analysis of x is given by ®*x = {(x[f], %[ﬂ)}ifzo

How is a signal best synthesized?
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SPARSE SYNTHESIS

» Back to the example: x(¥) = 6,(¢) + €, (1)

» Goal: how can we synthesize x with the fewest possible coefficients ?

N—1
, les find the synthesis coefficients a such that x[7] = Z a,@,[t] such that most of a, = 0
=l

» Detinition of the quasi-norm ¢, : ||a||, = #{a, # 0}



SPARSE REPRESENTATION — ATSI

26

SPARSE SYNTHESIS

» Goal: how can we synthesize x with the fewest possible coefficients ?

min||a||, s.t. x = Qa
» NP Hard ! Can be solved by MILP programming when N is small

» ldea: replace the £, norm by something easier to minimize
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SPARSE SYNTHESIS: THE FRAME METHOD

» Replace the £, norm by the £, norm

min ||a||,
» Solution: @ = ®*(OD*) " 1x
» Itis the dual frame

» No sparsity

s.t. x = O«
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SPARSE SYNTHESIS: THE BASIS PURSUIT

N—1
. Replace the £, norm by the £, norm: ||a||; = 2 |, |
n=0

min [|la||; s.t. x=Da
» Solution obtained by linear programming (the problem is convex and linear)

» Sparsity of the solution

» When this solution is the same as the true £, problem ? (Wait few classes)
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SPARSE SYNTHESIS: THE MATCHING PURSUIT

» Idea: use a greedy approach
- nit: r'V=x, xX0 =0, k=0
- Repeat

1. Find the optimal atom: 4, = argmax | (r, ¢,) |
p

2. Update the approximation: x (k1) = x (k) T (V(k), %k)%k

3. And the residual: r(¥t1) = x — x(k+1) = (k) _ (i”(k), 60,1k>§0,1k
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SPARSE SYNTHESIS: THE MATCHING PURSUIT

After K iterations (K > 0), we have

K
) X = Z <r(k)9 (p/lk>§0/1k T r(K)
k=0

5 . 2
y [[AENF = ([P D) = (D, @, )|
Moreover, we have

lim ||7®| =0
k——+o0
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SPARSE SYNTHESIS: THE MATCHING PURSUIT

» Shortcoming of the MP:

» It converges asymptotically

» An atome ¢, can be chosen several times

» Solution: orthogonal matching pursuit
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SPARSE SYNTHESIS: THE OMP

» |ldea: orthogonal projection of the signal on the subspace spanned by the selected atoms

» Algorithm:
- nit rP=x, xXV =0, k=0
- Repeat

1. Find the optimal atom: A, = argmax|(r, ¢,) |
A

|
2. Update the approximation: x (k1) = Pyix = Z 4P, with a;, = <(I>;§kCI>Ak> CDikx and A, = {xlj}]’.‘:o

3. And the residual: r(&+1) = x — x(k+1)
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SPARSE SYNTHESIS: THE OMP

» Converge in N iterations (remember x € R")

» Orthogonal projection can be costly in computation time



SPARSE DENOISING
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DENOISING BY SPARSE SYNTHESIS

» Letx € R! be asignal and ® € RY a dictionary where x is sparse
» Let y € R! be a noisy observation of x:
y=X+n
With n € R! a gaussian white noise
» Let a € RY some sparse synthesis coefficients of x:
y=®a+n

» How to "denoise" y ? Or, how to estimate the sparse coefficients a ?
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DENOISING BY SPARSE SYNTHESIS

y=®a+n
» Proposed solutions: solve
min ||a|ly s.t. ||y — CDaH% <o
» One can use MP, OMP, or the convex relaxation by replacing the £, norm by the £, norm

» LASSO or Basis Pursuit Denoising:

|
min EHy — (DOCH% + Allalf;
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LASS(O

B |
min EHy — CDO!H% + Alle|l4

» Itis a convex, non smooth problem

» Can be solved efficiently by proximal descent
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LASSO: THE ORTHOGONAL CASE

N
min 5||y — ®al|5 + Allall

» Suppose that N = T'and ©*® = OD* = [d, .

» The problems reads, with z = ®*y

: 2
min —|jz = all; + Allel];

» Itis the so-called proximal operator of 1| - ||,

» Solution: soft-thresholding

o = S,)(Z) = Zk<1

/ ) with (x)* = max(x,0)

|Zk|
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LASSO0: ISTA

1
min —{ly = @all} + Alall; = F(a)

» Let L = ||D||?

» lterative Shrinkage/Thresholding Algorithm (ISTA):

1
ot = Sr (a(t) 4 zq)*(y — da)

() L Ha(O) _ a*Hz
» F(a )—5?(05*)35

» Fast version: FISTA (just use a relaxation step)

)
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CONCLUSION

» Stable discretization of continuous transform: frame theory
» Sparse synthesis vs dual frame
» Sparse denoising

» Algorithms: Greedy (MP, OMP), Convex optimization (LASSO and proximal descent)

» Questions: matthieu.kowalski@universite-paris-saclay.fr
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