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Introduction: sparse approximation

” It is futile to do with more things that which can be done with fewer”

William of Ockham

But

Analyse, explain, represent. . . signals.

Exemples

Automatic transciption, source separation, coding. . .

Problem: How to represent a signal and select relevant “information” ?
Sparsity principle: explain a signal with few elements.
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Examples of representation of an audio signal
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Figure : Time-frequency images. Top: signal, bottom-left: representation adapted to
transceents. Bottom-right, representation adapted to tonals.

The characteristics of interest are rarely directly observable.
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Information concentration

pdf of samples of a signal and its MDCT coefficients.

Figure : Left: pdf of samples. Right: pdf MDCT coefficients.

A “good represenation” allows to concentrate the information in a few
coefficients
Some transforms

Fourier ;

Gabor or STFT ;

MDCT ;

wavelets ;

*-lets ;
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Observed pdf

We focused on this particularity : the sparsity of the extension for a given
component depend on the bases.

pdf of various representations of two sample signals : castagnet (solid
line) and organ (dotted line) : wavelet (left) and MDCT (right)
coefficients.
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Notations and definitions

Some notations

Let s ∈ CM a signal.

Let Φ ∈ CM×N , M ≤ N the matrix of a dictionnary {ϕk} (ie an
over-complete set), constructed as a set of time-frequency atoms.

Let y = s + b a noisy measure of a signal s.

Definition: synthesis coefficients

Let α ∈ CN such that s = Φα =
∑

k αkϕk .
αk are called synthesis coefficients.

if N > M, there exists an infinity of such a representation

Definition: analysis coefficients

We call analysis coefficients: {〈y , ϕk〉} = ΦT y
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Sparsity: synthesis approach

Goal: find a “god repsentation” ŝ of s such that ŝ = Φα̂

Hypothesis: s admits a sparse representation in the choosen dictionnary.
Ideal solution:

α̂ = argmin
α
‖α‖0 sc s = Φα

Noisy observation:

α̂ = argmin
α
‖y − Φα‖2

2 + λ‖α‖0

Probleme very hard to solve in a finite time ⇒ we relax the`0 constraint
into `1

LASSO [Tibshirani 96] or Basis Pursuit Denoising [Chen et al. 98]:

α̂ = argmin
α
‖y − Φα‖2

2 + λ‖α‖1
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Examples of representation of an audio signal
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Figure : Time-frequency images. Top: signal, bottom-left: representation adapted to
transceents. Bottom-right, representation adapted to tonals.
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Links between analysis/synthesis and maximum likelihood

Bayesian point of view

min
α
{‖y − Φα‖2

2 + λ‖α‖1}

⇔ max
α
{ e−‖y−Φα‖2

2︸ ︷︷ ︸
”bruit gaussien”

∏
k

e−λ|αk |

︸ ︷︷ ︸
a priori Laplacien

}

Hypothesis: Φ corresponds to an orthonormal basis ΦT = Φ−1.

Solution

Let ỹ = ΦT y . The solution is given by soft thresholding coefficient by
coefficient :

α̂k = arg(ỹk) (|ỹk | − λ)+

and ŝ = Φα̂
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Frameworks

Mathematical framework

y ∈ RM

x ∈ RN

A ∈ RM.N

Optimization framework

x = argminL(y,A, x) + P(x;λ)

1 A convex loss or data term L(y,A, x) measuring the fit between the
observed mixture y and the source signal x given the mixing system
A;

2 A regularization term P modeling the assumptions about the
sources,

3 An hyperparameter λ ∈ R+ governing the balance between the data
term and the regularization term.
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The Loss

Traditional assumption: Gaussian noise

L(y,A, x) =
1

2
‖y − Ax‖2

2

But other possible choices

Impulsive noise:

L(y,A, x) =
1

2
‖y − Ax‖1

Poisson noise:

L(y,A, x) = Ax− y + y ln
( y

Ax

)
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The Penalty

Goal: Model the prior on the sources.

“Analysis” prior

Models the “physical” assumptions on the sources

Minimum energy : 1
2‖x‖

2
2 [Tikhonov, 77]

Total variation (images) : ‖∇x‖1 [ROF, 92]

Sometimes, we need more flexibility: priors are not always in the
“samples” domain
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Optimization framework with dictionary

1 A Dictionary Φ

2 A convex loss or data term L(y,A,α) measuring the fit between the
observed mixture y and some synthesis coefficients α, such that
x = Φα, given the mixing system A;

3 A regularization term P modeling the assumptions about the
sources, in the synthesis coefficient domain

4 An hyperparameter λ ∈ R+ governing the balance between the data
term and the regularization term.
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The Dictionary

Synthesis point of view

Assume x can be written as

x =
K∑

k=1

αkϕk

= Φα

with
Φ ∈ CN.K , k ≥ N

Examples

Gabor

wavelets

Union of Gabor (hybrid model or Morphological Component
Analysis): x = x1 + x2 = Φ1α1 + Φ2α2

Frames ([Balazs et al., 2013])
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The penalty (returns)

Sparse approximation: key idea
x ∈ RN admits a sparse decomposition inside a dictionnary of waveforms
{ϕk}Kk=1:

x =
∑
k∈Λ

αkϕk

with Λ ⊂ {1, . . . ,K}

Given a (noisy) observation y = Ax + n, the Lasso/Basis Pursuit
Denoising [Tibshirani, 96], [Chen et al. 98] estimate reads:

α̂ = argmin
α

1

2
‖y − AΦα‖2 + λ‖α‖1

and
x̂ = Φα̂
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Mixed norms: definition

Definition [Benedek et al. 61]

Let {αg ,m} a double indexed sentence. We call mixed norm `p,q of α the
norm

‖α‖p,q =

∑
g

(∑
m

|αg ,m|p
)q/p

1/q

Figure : A grouping organisation doubly indexed.
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Mixed norms: remarks

General remarks

`p,q is a true norm for p, q ≥ 1.

Cases p = +∞ ou q =∞ are obtained by replacing the
corresponding norm by the supremum.

We can define corresponding quasi-normes for p, q < 1.

We generalize it on several levels [MK & AG 10].

Some particlar case in regression

p = q = 2 Ridge regression: no sparsity, no structure

p = q = 1 LASSO (or BPDN) regression: sparsity whithout
structure

p = 1 and q = 2 Group-LASSO [Yuan et al. 06] (or joint sparsity
[Fornasier et al. 08], or Multiple measurement vector [Cotter et al
05]) regression: sparisty between groups.

p = 2 and q = 1 Elitist-LASSO [MK 09, MK & BT 09] regression:
sparsity inside the groups.
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Regression and mixed norms

We are interrested by the following optimization problem

α̂ = argmin
α
‖y −Φα‖2

2 + λ‖α‖qp,q

Remark

This problem is convex for p, q ≥ 1 and strictly convex for p, q > 1.

Bayesian point of view

α̂ = argmax
α

e−‖y−Φα‖2
2e−λ‖α‖

q
p,q

= argmax
α

e−‖y−Φα‖2
2

∏
g

exp{−λ‖αg‖qp}

⇒ Independance is between the groups of coefficients
αg = (αg ,1 . . . αg ,m . . .) Decoupling on the groups, not on coefficients
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Hybrid/morphological decompositions

We guess that the signal s can be written as

s = s1 + s2

And each layer admit a sparse expandion in an adapted dictionnary
(Hybrid model [Daudet et al. 02] or morphological model [Starck et al.
05]).

A new dictionnary is build as the union of the two dictionnaries
D = D1 ∪ D2

Then, the synthesis model becomes:

s = Φ1α1 + Φ2α2

There still existsan infinity of such an expansion.

Problem: finding α and β.
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Variational formulation

We seek to estimate s by optimizing the following functional

α̂1, α̂2 = argmin
α1,α2

‖y −
∑
k

α1k
ϕ1k
−
∑
`

α2k
ϕ2k
‖2

2 + λ1‖α‖q1
p1,q1

+ λ2‖α‖q2
p2,q2

α̂1, α̂2 = argmin
α1,α2

‖y −Φ1α1 −Φ2α2‖2
2 + λ1‖α1‖q1

p1,q1
+ λ2‖α2‖q2

p2,q2

We obtain the decomposition into two layers:

ŝ1 = Φ1α̂1 ŝ2 = Φ2α̂2
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The penalty (summary)

Structured penalties

Structured sparsity via mixed norm [K,Torrésani 2008], [K, 2009]:

Group-Lasso [Yuan, Lin 2006]

P(α;λ) = λ‖α‖2;1 = λ
∑

g

√∑
m |αg,m|2

Elitist-Lasso [K,Torrésani 2008]

P(α;λ) = λ‖α‖2
1;2 = λ

∑
g

(∑
m |αg,m|

)2

Hi-Lasso [Jenatton et al. 2011], [Sprechmann et al. 2011]

P(α;λ) = λ ((1− ν)‖α‖2;1 + ν‖α‖1)

sub-modular functions etc. [Bach 2012]

α̂1, α̂2 = argmin
α1,α2

1

2
‖y − A(Φ1α1 + Φ2α2)‖2 + P(α1;λ1) + P(α2;λ2)

and
x̂ = Φ1α̂1 + Φ2α̂2
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Proximity operators

we suppose that Φ is orthogonal. We denote by ỹ = ΦT y

LASSO solution min
α
‖y − Φα‖2

2 + λ‖α‖1

α̂g ,m = arg(ỹg ,m) (|ỹg ,m| − λ)+

G-LASSO solution min
α
‖y − Φα‖2

2 + λ‖α‖2,1

α̂g ,m = ỹg ,m

(
1− λ

‖ỹg‖2

)+

E-LASSO solution min
α
‖y − Φα‖2

2 + λ‖α‖2
1,2

α̂g ,m = arg(ỹg ,m)

(
|ỹg ,m| −

λ

1 + λLg
‖|ỹg‖|

)+
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(Relaxed) ISTA

Let α(0) = 0, L ≥ 1
‖Φ∗Φ‖ , 0 ≤ µ < 1, and tmax ∈ N.

For t = 0 to tmax

α(t+1/2) = γ(t) + Φ∗(y −Φγ(t))/L

α(t+1) = S(α(t+1/2), λ/L)

γt+1 = α(t+1) + µ(t+1)(α(t+1) −α(t))

End For

with S a proximity operator (soft thresholding for `1).

Convergence proved by several authors

[Combettes & Wajs 05] forward-backward (proximity operators);

[Daubechies & al 04] Opial’s fixed point theorem;

[Figuereido & Nowak 03] EM algorithm;

Accelerated version by [Nesterov 07], [Beck & Teboulle 09] (FISTA).
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Limitations

Biased coefficients: large coefficients are shrinked [Gao, Bruce 97]

Lake of flexibility for structures: needs to define an adequate convex
penalty (not always simple)

Could we play directly on the thresholding step ?
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Thresholding rules

Definition [Antoniadis 07]

1 S(.;λ) is an odd function. ( S+(.;λ) is used to denote the S(.;λ)
restricted to R+.)

2 S(.;λ) is a shrinkage rule: 0 ≤ S+(t;λ) ≤ t, ∀t ∈ R+.

3 S+ is nondecreasing on R+, and lim
t→+∞

S(t;λ) = +∞
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Examples

Soft [Donoho, Johnstone 94]

S(x ;λ) = x

(
1− λ

|x |

)+

Hard Soft [Donoho, Johnstone 94]

S(x ;λ) = x1|x|>λ

NonNegativeGarrote (NNGarrote) [Gao 98]

S(x ;λ) = x(1− λ

|x |2
)+

Firm [Gao, Bruce 97]

S(x ;λ1;λ2) =


0 if |x | < λ1

xλ2(1− λ1
|x| )

λ2−λ1 if λ1 ≤ |x | < λ2

x |x | > λ2

SCAD [Antoniadis, Fan 01]

S(x ;λ; a) =


x(1− λ

|x| )
+ if |x | < 2λ

x(a−1− aλ
|x| )

a−2 if 2λ ≤ |x | < aλ

x if |x | > aλ
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Examples
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Properties of Thresholding rules

Definition: semi-convex fonction

A function f is said to be semi-convex, iff there exists c such that

x 7→ f (x) +
c

2
‖x‖2

is convex

Proposition

We can associate a semi-convex penalty P(.;λ), with c ≤ 1 to any
thresholding rules. Moreover, 1

1−c is an upper-bound of S′(.;λ).
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Convergence results

Theorem

ISTA converges with any thresholding rules

Relaxed ista converges for 0 ≤ µ < 1− c , where c is an
upper-bound of S′(.;λ)

Examples

NNGarrote (c = 1/2)

P(x ;λ) = λ2 + asinh

(
|x |
2λ

)
+ λ2 |x |√

x2 + 4λ2 + |x |

SCAD (c = a− 1)

P(x ;λ) =


λx if x ≤ λ
(aλx−x2/2)

a−1 if λ < x ≤ aλ

aλ if x > aλ
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Windowed Group-LASSO

Back to the model y = Φα+ b, with Φ orthonormal. Back to a simple
indexing, and for each index k , we define a neighborhood g(k).

Windowed G-Lasso [MK & BT 09], [K et al. 13]

α̂k = ỹk

1− λ√ ∑
m∈g(k)

|ỹm|2


+

= ỹk

(
1− λ

‖ỹg(k)‖2

)+

with ỹ = Φ∗y

N(k2)
k1

k2

N(k1)

Figure : WG-LASSO. Two overlapping
groups: neighborhood of k1 and k2.

Similar thresholding rules introduced by [Cai & Silvermanss 01] for wavelet
thresholding.
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Neighborhood with latents variables

Can we define the WG-Lasso by using proximity operator ?

thanks to the following strategy

map the original coefficients into a bigger space;

define independent groups over the neighborhood of the coefficients;

apply the (group-lasso) proximity operator;

go back to the original space.

Moreover, can we use the WG-Lasso inside ISTA ?
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Expended operators

Definition : Expanding operator

Let α ∈ CN . Let E : CN → CN×N be an expanded
operator such that

α = (α1, . . . , αN) 7→
(w1

1α1,w
1
2α2, . . . ,w

1
NαN , . . . ,w

N
1 α1, . . . ,w

N
N αN)

with w j
i ≥ 0,

∑
j |w

j
i |2 = 1 and w i

i > 0

proposition

E is isometrical, and then ETE = I.

E
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A left inverse

Definition : a natural left inverse

D : CN×N → CN

z = (z1
1 , . . . , z

1
N , . . . , z

N
1 , . . . , z

N
N ) 7→ x

such that ∀k , xk =
1

wk
k

zkk (1)

DE = I and then DE is a bi-orthogonal (oblique) projection.
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Structured shrinkage and proximity operators

proposition

Let S be the shrinkage operator of the WG-Lasso and Ω = ‖.‖21 the
regularizer of the G-lasso. Let E be the expanded operator as previously
defined and D its left inverse. Then

S(., λ) = D ◦ proxλΩ ◦ E

α̂k = ỹk

1− λ√ ∑
m∈g(k)

|ỹm|2


+

= ỹk

(
1− λ

‖ỹg(k)‖2

)+

Remark

S cannot be a proximity operator (it is even not a nonexpansive operator).
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Neighborhood as a convex prior

social sparsity convex regularizers

Let α ∈ CN and let E be the expanded operator.
cvx windowed group lasso:

Ωwgl(α) =
N∑

k=1

√ ∑
`∈N (k)

w
(k)
` |α`|2

= ‖Eα‖21

cvx windowed elitist lasso:

Ωwel(α) =
N∑

k=1

 ∑
`∈N (k)

w
(k)
` |α`|

2

= ‖Eα‖2
12
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A convex functional for social sparsity

A natural convex functional is (aka group-Lasso with overlaps [Bayram 11])

F (α) =
1

2
‖y −Φα‖2 + λ‖Eα‖21

one can look for

α̂ = argmin
α∈CN

F (α)

= ET argmin
u

1

2
‖y −ΦET z‖2 + λ‖z‖21

s.t EET z = z

Similar functional introduced by [Peyré & Fadili 11].

several approach can be used to minimize F (ISTA + Douglas
Rachford, augmented lagrangian. . . )

But: this penalty acts as a discarding procedure, not a selection.
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G-Lasso with overlaps VS latent-G-Lasso

Instead of

F (α) =
1

2
‖y −Φα‖2 + λ‖Eα‖21

[Jacob & al. 09] propose to minimize

F (α̃) =
1

2
‖y −ΦET α̃‖2 + λ‖α̃‖21

to obtain a selection of active groups.

Curse of dimension in both cases !
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Link between the convex functional and our shrinkages

ISTA with WG-Lasso becomes:

z(k) = ED proxλ
γ ‖.‖∗

((
z̃(k−1)

))
αk = Dzk

where z̃(k−1) = z(k−1) +
E

γ
Φ∗(y −ΦET z(k−1))

It is a proximal descent followed by an oblique projection on Im(E ).

conjecture

ISTA with WG-Lasso converges to a fixed point.
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Orthogonal social sparsity

An Orthogonal version

z(k) = EET proxλ
γ ‖.‖∗

((
z̃(k−1)

))
where z̃(k−1) = z(k−1) +

E

γ
Φ∗(y −ΦET z(k−1))

orth-WG-Lasso

αk = ỹk
∑
j

1

w j
j

1− λ√ ∑
j′∈N (j)

w
(j)
j′ |ỹk′ |2


+

.

WG-Lasso : α̂k = ỹk

1−
λ√ ∑

m∈g(k)

|ỹm|2


+
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A family of shrinkage operators

α = S(y) is given coordinatewise:

Lasso:

αk = yk

(
1− λ

|yk |

)+

NNGarrote / Empirical Wiener

αk = yk

(
1− λ

|yk |2

)+

Windowed Group Lasso

αk = ỹk

(
1− λ

‖ỹg(k)‖2

)+

Empirical Persistent Wiener [Siedenburg 13]

αk = ỹk

(
1− λ

‖ỹg(k)‖2
2

)+
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Tonal/transcient separation - 1

Excerpt of Mamavatu from Susheela Raman. Length of windows analysis
for MDCT:

For tonal layer: 4096 samples (93 ms) (Left)
For transicent layer: 128 samples (3 ms) (Right)
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Tonal/transcient separation - 2

Figure : Left: tonal layers. Right: transcient layers. From top to bottom: LASSO/LASSO,
LASSO/ELASSO, LASSO/GLASSO.
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Simulation of structured sparse signals

Figure : A structured sparse significance map ∆
generated by Markov chain.

Simulated signal:

y =
∑

(t,f )∈∆

x(t,f )ϕ(t,f ) + b ,

with:

∆ the significance map generated by
Markov chain.

For (t, f ) ∈ ∆, x(t,f ) ∼ N (0, σ2).

b a white gaussian noise.
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Orthogonal case

Figure : Type 1 error Type 2 error

Type 1: π1 = P{(t, f ) /∈ ∆̂ | (t, f ) ∈ ∆} ;
Type 2: π2 = P{(t, f ) ∈ ∆̂ | (t, f ) /∈ ∆}.
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Frame case

Figure : Type 1 error Type 2 error

Type 1: π1 = P{(t, f ) /∈ ∆̂ | (t, f ) ∈ ∆} ;
Type 2: π2 = P{(t, f ) ∈ ∆̂ | (t, f ) /∈ ∆}.
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Audio Declipping

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Matthieu Kowalski *-Lasso Therapy: a sparse synthesis approach. 57 / 66



Introduction: sparse approximation An optimization framework Iterative Thresholding Numerical results Conclusion
Application to tonal/transicent separation Simulations Audio declipping

Audio inpainting: forward problem [A. Adler, V. Emiya et Al]

yr = Mrx

where

x ∈ RN is the unknown “clean” signal;

yr ∈ RM are the “reliable” sample of the observed signal

Mr ∈ RM×N is the matrix of the reliable support of x

we can also define the missing samples as

ym = Mmx
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Reliable vs Unreliable coeff.

Introducing examples Problem statement Time-dom. framework Algorithms Experiments Conclusions

Problem description and matrix formulation

Unreliable data

Observation y

Missing data to be estimated

Original s (unknown)

Degradation

Mm

Mr

yr = Mry

ym = Mmy

Mm =




00010000000000000
00000001000000000
00000000100000000
00000000000100000
00000000000010000
00000000000001000
00000000000000001




Mr =




10000000000000000
01000000000000000
00100000000000000
00001000000000000
00000100000000000
00000010000000000
00000000010000000
00000000001000000
00000000000000100
00000000000000010




Reliable data

Audio Inpainting - V. Emiya 13
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Audio declipping: (constrained and convex) inverse
problem

For audio declipping, we can add the following constraint

α̂ = argmin
α

1

2
‖yr −MrΦα‖+ λ‖α‖1

s.t. Mm+

Φα > θclip

Mm−Φα < θclip

where Mm+

(resp. Mm−) select the positive (resp. negative) samples.

Problem: cannot be solved “efficiently” with (F)ISTA
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Audio declipping: (convex unconstrained) inverse problem

Let

[θclip − x]2
+ =

∑
k:θclipk >0

(θclipk − xk)2
+ +

∑
k:θclipk <0

(−θclipk + xk)2
+

We consider the following unconstrained convex problem:

α = argmin
α

1

2
‖yr −MrΦα‖2

2 +
1

2
[θclip −MmΦα]2

+ + P(α;λ)

which is under the form

f1(α) + f2(α)

with f1 Lipschitz-differentiable and f2 semi-convex.

We can apply (relaxed)-ISTA directly !
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Numerical results
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Music @ 16kHz

Average SNRmiss for 10 speech (left) and music (right) signals over
different clipping levels and operators. Neighborhoods extend 3 and 7
coefficients in time for speech and music signals, respectively.
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Numerical results: zoom on reconstructions
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Declipped music signal using different operators for clip level θclip = 0.2
using the Lasso, WGL, EW, PEW, HT, and OMP operators.
Neighborhood size for WGL and PEW was 7.
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Original Vs clipped Vs declipped Signal
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Conclusion

Take home messages

Use dictionary to get sparsity

Play on thresholding rules in ISTA

Define some neighborhoods for “flexible” structures

Next. . .

Some practical issues (warm start: how many iterations, λ)

Some theoretical issues (more on convergence)
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