*-Lasso Therapy: a sparse synthesis approach.

Matthieu KOWALSKI

Univiversity Paris-Saclay L2S (GPI)

- 2 An optimization framework
 - General approach
 - Mixed Norms
 - Hybrid (or multilayers) models
- Iterative Thresholding
 - Thresholding functions
 - Neighborhood thresholding

4 Numerical results

- Application to tonal/transicent separation
- Simulations
- Audio declipping

5 Conclusion

" It is futile to do with more things that which can be done with fewer"

William of Ockham

But Analyse, explain, represent... signals.

Exemples

Automatic transciption, source separation, coding...

Problem: How to represent a signal and select relevant "information" ? Sparsity principle: explain a signal with few elements.

- 2 An optimization framework
 - General approach
 - Mixed Norms
 - Hybrid (or multilayers) models
- Iterative Thresholding
 - Thresholding functions
 - Neighborhood thresholding

4 Numerical results

- Application to tonal/transicent separation
- Simulations
- Audio declipping

5 Conclusion

Examples of representation of an audio signal

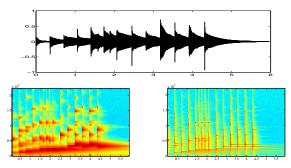


FIGURE : *Time-frequency images. Top: signal, bottom-left: representation adapted to transceents. Bottom-right, representation adapted to tonals.*

The characteristics of interest are rarely directly observable.

Information concentration

pdf of samples of a signal and its MDCT coefficients.

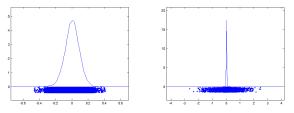


FIGURE : Left: pdf of samples. Right: pdf MDCT coefficients.

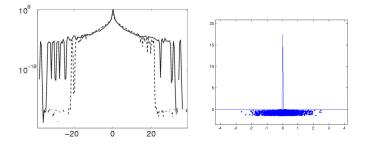
A "good represenation" allows to concentrate the information in a few coefficients

Some transforms

- Fourier ;
- Gabor or STFT ;
- MDCT ;
- wavelets ;
- *-lets ;

Observed pdf

We focused on this particularity : the sparsity of the extension for a given component depend on the bases.



pdf of various representations of two sample signals : castagnet (solid line) and organ (dotted line) : wavelet (left) and MDCT (right) coefficients.

Notations and definitions

Some notations

- Let $s \in \mathbb{C}^M$ a signal.
- Let Φ ∈ C^{M×N}, M ≤ N the matrix of a dictionnary {φ_k} (ie an over-complete set), constructed as a set of time-frequency atoms.
- Let y = s + b a noisy measure of a signal s.

Definition: synthesis coefficients

Let $\alpha \in \mathbb{C}^{N}$ such that $s = \Phi \alpha = \sum_{k} \alpha_{k} \varphi_{k}$. α_{k} are called synthesis coefficients. if N > M, there exists an infinity of such a representation

Definition: analysis coefficients

We call analysis coefficients: $\{\langle y, \varphi_k \rangle\} = \Phi^T y$

Sparsity: synthesis approach

Goal: find a "god repsentation" \hat{s} of s such that $\hat{s} = \Phi \hat{\alpha}$

Hypothesis: *s* admits a sparse representation in the choosen dictionnary. **Ideal solution:**

$$\hat{\alpha} = \operatorname*{argmin}_{\alpha} \|\alpha\|_{0} \quad \mathrm{sc} \quad s = \Phi \alpha$$

Noisy observation:

$$\hat{\alpha} = \operatorname*{argmin}_{\alpha} \|y - \Phi \alpha\|_{2}^{2} + \lambda \|\alpha\|_{0}$$

Probleme very hard to solve in a finite time \Rightarrow we relax the ℓ_0 constraint into ℓ_1

LASSO [Tibshirani 96] or Basis Pursuit Denoising [Chen et al. 98]:

$$\hat{\alpha} = \operatorname*{argmin}_{\alpha} \| y - \Phi \alpha \|_{2}^{2} + \lambda \| \alpha \|_{1}$$

Examples of representation of an audio signal

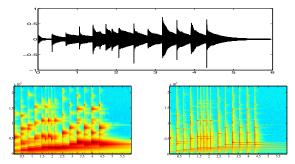


FIGURE : *Time-frequency images. Top: signal, bottom-left: representation adapted to transceents. Bottom-right, representation adapted to tonals.*

Links between analysis/synthesis and maximum likelihood

Bayesian point of view

$$\min_{\alpha} \{ \|y - \Phi \alpha\|_{2}^{2} + \lambda \|\alpha\|_{1} \}$$

$$\Leftrightarrow \max_{\alpha} \{ \underbrace{e^{-\|y - \Phi \alpha\|_{2}^{2}}}_{\text{"bruit gaussien"}} \qquad \underbrace{\prod_{k} e^{-\lambda |\alpha_{k}|}}_{\text{a priori Laplacien}} \}$$

Hypothesis: Φ corresponds to an orthonormal basis $\Phi^T = \Phi^{-1}$.

Solution

Let $\tilde{y} = \Phi^T y$. The solution is given by soft thresholding *coefficient by coefficient* :

$$\hat{\alpha}_k = \arg(\tilde{y}_k) \left(|\tilde{y}_k| - \lambda \right)^+$$

and $\hat{s} = \Phi \hat{\alpha}$

- 2 An optimization framework
 - General approach
 - Mixed Norms
 - Hybrid (or multilayers) models

Iterative Thresholding

- Thresholding functions
- Neighborhood thresholding

Numerical results

- Application to tonal/transicent separation
- Simulations
- Audio declipping

5 Conclusion

Frameworks

Mathematical framework

- $\mathbf{y} \in \mathbb{R}^{M}$
- $\mathbf{x} \in \mathbb{R}^N$
- $A \in \mathbb{R}^{M.N}$

Optimization framework

$$\mathbf{x} = \operatorname{argmin} \mathcal{L}(\mathbf{y}, A, \mathbf{x}) + P(\mathbf{x}; \lambda)$$

- A convex loss or data term L(y, A, x) measuring the fit between the observed mixture y and the source signal x given the mixing system A;
- A regularization term P modeling the assumptions about the sources,
- On hyperparameter λ ∈ ℝ₊ governing the balance between the data term and the regularization term.

The Loss

Traditional assumption: Gaussian noise

$$\mathcal{L}(\mathbf{y}, A, \mathbf{x}) = rac{1}{2} \|\mathbf{y} - A\mathbf{x}\|_2^2$$

But other possible choices

• Impulsive noise:

$$\mathcal{L}(\mathbf{y}, \mathcal{A}, \mathbf{x}) = rac{1}{2} \|\mathbf{y} - \mathcal{A}\mathbf{x}\|_1$$

Poisson noise:

$$\mathcal{L}(\mathbf{y}, A, \mathbf{x}) = A\mathbf{x} - \mathbf{y} + \mathbf{y} \ln\left(\frac{\mathbf{y}}{A\mathbf{x}}\right)$$

The Penalty

Goal: Model the prior on the sources.

"Analysis" prior

Models the "physical" assumptions on the sources

- Minimum energy : $\frac{1}{2} \|\mathbf{x}\|_2^2$ [Tikhonov, 77]
- Total variation (images) : $\|\nabla \mathbf{x}\|_1$ [ROF, 92]

Sometimes, we need more flexibility: priors are not always in the "samples" domain

Optimization framework with dictionary

Δ A Dictionary Φ

- A convex loss or data term L(y, A, α) measuring the fit between the observed mixture y and some synthesis coefficients α, such that x = Φα, given the mixing system A;
- A regularization term P modeling the assumptions about the sources, in the synthesis coefficient domain
- An hyperparameter λ ∈ ℝ₊ governing the balance between the data term and the regularization term.

Introduction: sparse approximation An optimization framework Iterative Thresholding Numerical results Conclusion Mixed Norms Hybrid (or multilayers) models

The Dictionary

Synthesis point of view

Assume \mathbf{x} can be written as

$$\mathbf{x} = \sum_{k=1}^{K} \alpha_k \boldsymbol{\varphi}_k$$
$$= \mathbf{\Phi} \boldsymbol{\alpha}$$

with

$$\mathbf{\Phi}\in\mathbb{C}^{N.K},\quad k\geq N$$

Examples

- Gabor
- wavelets
- Union of Gabor (hybrid model or Morphological Component Analysis): $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2 = \mathbf{\Phi}_1 \alpha_1 + \mathbf{\Phi}_2 \alpha_2$
- Frames ([Balazs et al., 2013])

The penalty (returns)

Sparse approximation: key idea $\mathbf{x} \in \mathbb{R}^N$ admits a sparse decomposition inside a dictionnary of waveforms $\{\varphi_k\}_{k=1}^K$:

$$\mathbf{x} = \sum_{k \in \Lambda} lpha_k \boldsymbol{arphi}_k$$

with $\Lambda \subset \{1, \ldots, K\}$

Given a (noisy) observation $\mathbf{y} = A\mathbf{x} + \mathbf{n}$, the Lasso/Basis Pursuit Denoising [Tibshirani, 96], [Chen *et al.* 98] estimate reads:

$$\hat{\boldsymbol{\alpha}} = \operatorname*{argmin}_{\boldsymbol{\alpha}} \frac{1}{2} \| \boldsymbol{y} - \boldsymbol{A} \boldsymbol{\Phi} \boldsymbol{\alpha} \|^2 + \lambda \| \boldsymbol{\alpha} \|_1$$

and

$$\hat{\mathbf{x}} = \mathbf{\Phi} \hat{\boldsymbol{\alpha}}$$

- 2 An optimization framework
 - General approach

Mixed Norms

• Hybrid (or multilayers) models

Iterative Thresholding

- Thresholding functions
- Neighborhood thresholding

Numerical results

- Application to tonal/transicent separation
- Simulations
- Audio declipping

5 Conclusion

Mixed norms: definition

Definition [Benedek et al. 61]

Let $\{\alpha_{{\it g},{\it m}}\}$ a double indexed sentence. We call mixed norm $\ell_{{\it p},{\it q}}$ of α the norm

$$\|\boldsymbol{\alpha}\|_{p,q} = \left(\sum_{g} \left(\sum_{m} |\alpha_{g,m}|^{p}\right)^{q/p}\right)^{1/q}$$

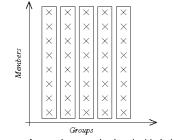


FIGURE : A grouping organisation doubly indexed.

Mixed norms: remarks

General remarks

- $\ell_{p,q}$ is a true norm for $p, q \ge 1$.
- Cases $p = +\infty$ ou $q = \infty$ are obtained by replacing the corresponding norm by the supremum.
- We can define corresponding quasi-normes for p, q < 1.
- We generalize it on several levels [MK & AG 10].

Some particlar case in regression

- p = q = 2 Ridge regression: no sparsity, no structure
- p = q = 1 LASSO (or BPDN) regression: sparsity whithout structure
- p = 1 and q = 2 **Group-LASSO** [Yuan *et al.* 06] (or *joint sparsity* [Fornasier *et al.* 08], or *Multiple measurement vector* [Cotter *et al* 05]) regression: sparisty between groups.
- p = 2 and q = 1 Elitist-LASSO [MK 09, MK & BT 09] regression: sparsity *inside* the groups.

ntroduction: sparse approximation An optimization framework Iterative Thresholding Numerical results Conclusion

Regression and mixed norms

We are interrested by the following optimization problem

$$\hat{\boldsymbol{\alpha}} = \operatorname*{argmin}_{\boldsymbol{\alpha}} \| \mathbf{y} - \boldsymbol{\Phi} \boldsymbol{\alpha} \|_{2}^{2} + \lambda \| \boldsymbol{\alpha} \|_{p,q}^{q}$$

Remark

This problem is convex for $p, q \ge 1$ and strictly convex for p, q > 1.

Bayesian point of view

$$\hat{\boldsymbol{\alpha}} = \operatorname*{argmax}_{\boldsymbol{\alpha}} e^{-\|\mathbf{y} - \boldsymbol{\Phi}\boldsymbol{\alpha}\|_{2}^{2}} e^{-\lambda \|\boldsymbol{\alpha}\|_{p,q}^{q}}$$
$$= \operatorname*{argmax}_{\boldsymbol{\alpha}} e^{-\|\mathbf{y} - \boldsymbol{\Phi}\boldsymbol{\alpha}\|_{2}^{2}} \prod_{g} \exp\{-\lambda \|\boldsymbol{\alpha}_{g}\|_{p}^{q}$$

 \Rightarrow Independance is between the groups of coefficients $\alpha_g = (\alpha_{g,1} \dots \alpha_{g,m} \dots)$ Decoupling on the groups, not on coefficients

- 2 An optimization framework
 - General approach
 - Mixed Norms
 - Hybrid (or multilayers) models

Iterative Thresholding

- Thresholding functions
- Neighborhood thresholding

Numerical results

- Application to tonal/transicent separation
- Simulations
- Audio declipping

5 Conclusion

ntroduction: sparse approximation An optimization framework Iterative Thresholding Numerical results Conclusion internal approach Mixed Norms

Hybrid/morphological decompositions

We guess that the signal s can be written as

 $\mathbf{s} = \mathbf{s}_1 + \mathbf{s}_2$

And each layer admit a sparse expandion in an adapted dictionnary (Hybrid model [Daudet *et al.* 02] or morphological model [Starck *et al.* 05]).

A new dictionnary is build as the union of the two dictionnaries $\mathcal{D} = \mathcal{D}_1 \cup \mathcal{D}_2$ Then, the synthesis model becomes:

$$\mathbf{s} = \mathbf{\Phi}_1 \boldsymbol{\alpha}_1 + \mathbf{\Phi}_2 \boldsymbol{\alpha}_2$$

There still exists n infinity of such an expansion.

Problem: finding α and β .

Variational formulation

We seek to estimate s by optimizing the following functional

$$\hat{\boldsymbol{\alpha}}_{1}, \hat{\boldsymbol{\alpha}}_{2} = \underset{\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}}{\operatorname{argmin}} \| \mathbf{y} - \sum_{k} \alpha_{1_{k}} \varphi_{1_{k}} - \sum_{\ell} \alpha_{2_{k}} \varphi_{2_{k}} \|_{2}^{2} + \lambda_{1} \| \boldsymbol{\alpha} \|_{\rho_{1}, q_{1}}^{q_{1}} + \lambda_{2} \| \boldsymbol{\alpha} \|_{\rho_{2}, q_{2}}^{q_{2}}$$
$$\hat{\boldsymbol{\alpha}}_{1}, \hat{\boldsymbol{\alpha}}_{2} = \underset{\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}}{\operatorname{argmin}} \| \mathbf{y} - \boldsymbol{\Phi}_{1} \boldsymbol{\alpha}_{1} - \boldsymbol{\Phi}_{2} \boldsymbol{\alpha}_{2} \|_{2}^{2} + \lambda_{1} \| \boldsymbol{\alpha}_{1} \|_{\rho_{1}, q_{1}}^{q_{1}} + \lambda_{2} \| \boldsymbol{\alpha}_{2} \|_{\rho_{2}, q_{2}}^{q_{2}}$$

We obtain the decomposition into two layers:

$$\hat{\mathbf{s}}_1 = \mathbf{\Phi}_1 \hat{\boldsymbol{lpha}}_1 \quad \hat{\mathbf{s}}_2 = \mathbf{\Phi}_2 \hat{\boldsymbol{lpha}}_2$$

The penalty (summary)

Structured penalties

• Structured sparsity via mixed norm [K,Torrésani 2008], [K, 2009]:

• Group-Lasso [Yuan, Lin 2006]

$$P(\alpha; \lambda) = \lambda ||\alpha||_{2;1} = \lambda \sum_{g} \sqrt{\sum_{m} |\alpha_{g,m}|^2}$$

• Elitist-Lasso [K, Torrésani 2008]

$$P(\boldsymbol{\alpha}; \lambda) = \lambda \|\boldsymbol{\alpha}\|_{1;2}^2 = \lambda \sum_{g} \left(\sum_{m} |\alpha_{g,m}| \right)^2$$

- Hi-Lasso [Jenatton *et al.* 2011], [Sprechmann *et al.* 2011] $P(\alpha; \lambda) = \lambda ((1 - \nu) \|\alpha\|_{2;1} + \nu \|\alpha\|_1)$
- sub-modular functions etc. [Bach 2012]

$$\hat{\boldsymbol{\alpha}}_1, \hat{\boldsymbol{\alpha}}_2 = \operatorname*{argmin}_{\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2} \frac{1}{2} \| \boldsymbol{y} - \boldsymbol{A} (\boldsymbol{\Phi}_1 \boldsymbol{\alpha}_1 + \boldsymbol{\Phi}_2 \boldsymbol{\alpha}_2) \|^2 + \boldsymbol{P}(\boldsymbol{\alpha}_1; \lambda_1) + \boldsymbol{P}(\boldsymbol{\alpha}_2; \lambda_2)$$

and

$$\hat{\mathbf{x}} = \mathbf{\Phi}_1 \hat{\mathbf{lpha}}_1 + \mathbf{\Phi}_2 \hat{\mathbf{lpha}}_2$$

2 An optimization framework

- General approach
- Mixed Norms
- Hybrid (or multilayers) models

Iterative Thresholding

- Thresholding functions
- Neighborhood thresholding

4 Numerical results

- Application to tonal/transicent separation
- Simulations
- Audio declipping

5 Conclusion

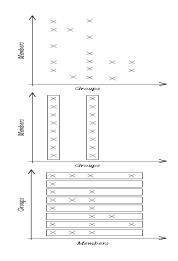
Introduction: sparse approximation An optimization framework Iterative Thresholding Numerical results Conclusion Thresholding functions

Proximity operators

we suppose that Φ is *orthogonal*. We denote by $\tilde{y} = \Phi^T y$

LASSO solution
$$\min_{\alpha} \|y - \Phi \alpha\|_{2}^{2} + \lambda \|\alpha\|_{1}$$

 $\hat{\alpha}_{g,m} = \arg(\tilde{y}_{g,m}) (|\tilde{y}_{g,m}| - \lambda)^{+}$
G-LASSO solution $\min_{\alpha} \|y - \Phi \alpha\|_{2}^{2} + \lambda \|\alpha\|_{2,1}$
 $\hat{\alpha}_{g,m} = \tilde{y}_{g,m} \left(1 - \frac{\lambda}{\|\tilde{y}_{g}\|_{2}}\right)^{+}$
E-LASSO solution $\min_{\alpha} \|y - \Phi \alpha\|_{2}^{2} + \lambda \|\alpha\|_{1,2}^{2}$
 $\hat{\alpha}_{g,m} = \arg(\tilde{y}_{g,m}) \left(|\tilde{y}_{g,m}| - \frac{\lambda}{1 + \lambda L_{g}} \|\tilde{y}_{g}\|\right)^{+}$



ntroduction: sparse approximation An optimization framework Iterative Thresholding Numerical results Conclusion Thresholding functions Neighborhood thresholding

(Relaxed) ISTA

• Let
$$\boldsymbol{\alpha}^{(0)} = \boldsymbol{0}$$
, $L \geq \frac{1}{\|\boldsymbol{\Phi}^* \boldsymbol{\Phi}\|}$, $0 \leq \mu < 1$, and $t_{max} \in \mathbb{N}$.

• For
$$t = 0$$
 to t_{max}

$$\begin{split} \boldsymbol{\alpha}^{(t+1/2)} &= \boldsymbol{\gamma}^{(t)} + \boldsymbol{\Phi}^* (\mathbf{y} - \boldsymbol{\Phi} \boldsymbol{\gamma}^{(t)}) / L \\ \boldsymbol{\alpha}^{(t+1)} &= \mathbb{S}(\boldsymbol{\alpha}^{(t+1/2)}, \lambda / L) \\ \boldsymbol{\gamma}^{t+1} &= \boldsymbol{\alpha}^{(t+1)} + \mu^{(t+1)} (\boldsymbol{\alpha}^{(t+1)} - \boldsymbol{\alpha}^{(t)}) \end{split}$$

End For

with \mathbb{S} a proximity operator (soft thresholding for ℓ_1).

Convergence proved by several authors

- [Combettes & Wajs 05] forward-backward (proximity operators);
- [Daubechies & al 04] Opial's fixed point theorem;
- [Figuereido & Nowak 03] EM algorithm;

Accelerated version by [Nesterov 07], [Beck & Teboulle 09] (FISTA).

Limitations

- Biased coefficients: large coefficients are shrinked [Gao, Bruce 97]
- Lake of flexibility for structures: needs to define an adequate convex penalty (not always simple)

Could we play directly on the thresholding step ?

2 An optimization framework

- General approach
- Mixed Norms
- Hybrid (or multilayers) models

Iterative Thresholding

- Thresholding functions
- Neighborhood thresholding

4 Numerical results

- Application to tonal/transicent separation
- Simulations
- Audio declipping

5 Conclusion

Introduction: sparse approximation An optimization framework Iterative Thresholding Numerical results Conclusion Neighborhood thresholding

Thresholding rules

Definition [Antoniadis 07]

- S(.; λ) is an odd function. (S₊(.; λ) is used to denote the S(.; λ) restricted to R₊.)
- $\ \ \, {\mathbb S}(.;\lambda) \ \, {\rm is \ a \ shrinkage \ rule:} \ \ \, 0\leq {\mathbb S}_+(t;\lambda)\leq t, \ \, \forall t\in {\mathbb R}_+.$
- **③** \mathbb{S}_+ is nondecreasing on \mathbb{R}_+ , and $\lim_{t \to +\infty} \mathbb{S}(t; \lambda) = +\infty$

ntroduction: sparse approximation An optimization framework Iterative Thresholding Numerical results Conclusion Neighborhood thresholding

Examples

• Soft [Donoho, Johnstone 94]

$$\mathbb{S}(x;\lambda) = x\left(1-rac{\lambda}{|x|}
ight)^+$$

• Hard Soft [Donoho, Johnstone 94]

$$\mathbb{S}(x;\lambda) = x \mathbf{1}_{|x|>\lambda}$$

• NonNegativeGarrote (NNGarrote) [Gao 98]

$$\mathbb{S}(x;\lambda)=x(1-rac{\lambda}{|x|^2})^+$$

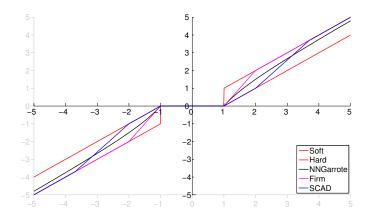
• Firm [Gao, Bruce 97]

$$\mathbb{S}(x; \lambda_1; \lambda 2) = \begin{cases} 0 & \text{if } |x| < \lambda_1 \\ \frac{x\lambda_2(1 - \frac{\lambda_1}{|x|})}{\lambda_2 - \lambda 1} & \text{if } \lambda_1 \le |x| < \lambda_2 \\ x & |x| > \lambda_2 \end{cases}$$

• SCAD [Antoniadis, Fan 01]
$$\mathbb{S}(x; \lambda; a) = \begin{cases} x(1 - \frac{\lambda}{|x|})^+ & \text{if } |x| < 2\lambda \\ \frac{x(a - 1 - \frac{a\lambda}{|x|})}{a - 2} & \text{if } 2\lambda \le |x| < a\lambda \\ x & \text{if } |x| > a\lambda \end{cases}$$

Introduction: sparse approximation An optimization framework Iterative Thresholding Numerical results Conclusion Neighborhood thresholding

Examples



ighborhood thresholding

Properties of Thresholding rules

Definition: semi-convex fonction

A function f is said to be semi-convex, iff there exists c such that

$$x\mapsto f(x)+rac{c}{2}\|x\|^2$$

is convex

Proposition

We can associate a semi-convex penalty $P(.; \lambda)$, with $c \leq 1$ to any thresholding rules. Moreover, $\frac{1}{1-c}$ is an upper-bound of $\mathbb{S}'(.; \lambda)$.

Convergence results

Theorem

- ISTA converges with any thresholding rules
- Relaxed ista converges for $0 \le \mu < 1 c$, where c is an upper-bound of $\mathbb{S}'(.; \lambda)$

Examples

$$P(x;\lambda) = \lambda^2 + \operatorname{asinh}\left(\frac{|x|}{2\lambda}\right) + \lambda^2 \frac{|x|}{\sqrt{x^2 + 4\lambda^2} + |x|}$$

• SCAD (c = a - 1)

$$P(x; \lambda) = \begin{cases} \lambda x & \text{if } x \leq \lambda \\ \frac{(a\lambda x - x^2/2)}{a - 1} & \text{if } \lambda < x \leq a\lambda \\ a\lambda & \text{if } x > a\lambda \end{cases}$$

1 Introduction: sparse approximation

2 An optimization framework

- General approach
- Mixed Norms
- Hybrid (or multilayers) models

Iterative Thresholding

- Thresholding functions
- Neighborhood thresholding

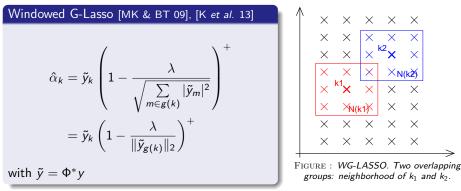
Numerical results

- Application to tonal/transicent separation
- Simulations
- Audio declipping

5 Conclusion

Windowed Group-LASSO

Back to the model $\mathbf{y} = \mathbf{\Phi}\alpha + \mathbf{b}$, with $\mathbf{\Phi}$ orthonormal. Back to a simple indexing, and for each index k, we define a neighborhood g(k).



Similar thresholding rules introduced by $[{\sf Cai}\ \&\ {\sf Silvermanss}\ 01]$ for wavelet thresholding.

Neighborhood with latents variables

Can we define the WG-Lasso by using proximity operator ?

thanks to the following strategy

- map the original coefficients into a bigger space;
- define independent groups over the neighborhood of the coefficients;
- apply the (group-lasso) proximity operator;
- go back to the original space.

Moreover, can we use the WG-Lasso inside ISTA ?

Expended operators

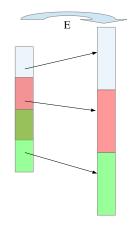
Definition : Expanding operator

Let $\alpha \in \mathbb{C}^N$. Let $\mathbf{E}: \mathbb{C}^N \to \mathbb{C}^{N \times N}$ be an expanded operator such that

$$\begin{split} \boldsymbol{\alpha} &= (\alpha_1, \dots, \alpha_N) \mapsto \\ (w_1^1 \alpha_1, w_2^1 \alpha_2, \dots, w_N^1 \alpha_N, \dots, w_1^N \alpha_1, \dots, w_N^N \alpha_N \\ \text{with } w_i^j \geq 0, \ \sum_j |w_i^j|^2 = 1 \text{ and } w_i^j > 0 \end{split}$$

proposition

E is isometrical, and then $\mathbf{E}^T \mathbf{E} = \mathbf{I}$.



A left inverse

Definition : a natural left inverse

$$\mathbf{D} : \mathbb{C}^{N \times N} \to \mathbb{C}^{N}$$
$$\mathbf{z} = (z_{1}^{1}, \dots, z_{N}^{1}, \dots, z_{1}^{N}, \dots, z_{N}^{N}) \mapsto \mathbf{x}$$
such that $\forall k, x_{k} = \frac{1}{w_{k}^{k}} z_{k}^{k}$ (1)

DE = I and then DE is a bi-orthogonal (oblique) projection.

Structured shrinkage and proximity operators

proposition

Let S be the shrinkage operator of the WG-Lasso and $\Omega=\|.\|_{21}$ the regularizer of the G-lasso. Let ${\bm E}$ be the expanded operator as previously defined and ${\bm D}$ its left inverse. Then

 $\mathbb{S}(.,\lambda) = \mathbf{D} \circ \operatorname{prox}_{\lambda\Omega} \circ \mathbf{E}$

$$\hat{\alpha}_k = \tilde{y}_k \left(1 - \frac{\lambda}{\sqrt{\sum_{m \in g(k)} |\tilde{y}_m|^2}} \right)^+ = \tilde{y}_k \left(1 - \frac{\lambda}{\|\tilde{y}_{g(k)}\|_2} \right)^+$$

Remark

 \mathbb{S} cannot be a proximity operator (it is even not a nonexpansive operator).

Neighborhood as a convex prior

social sparsity convex regularizers

Let $\alpha \in \mathbb{C}^N$ and let **E** be the expanded operator. **cvx windowed group lasso:**

$$egin{aligned} \Omega_{\mathit{wgl}}(oldsymbollpha) &= \sum_{k=1}^N \sqrt{\sum_{\ell\in\mathcal{N}(k)} w_\ell^{(k)} |lpha_\ell|^2} \ &= \|\mathbf{E}oldsymbollpha\|_{21} \end{aligned}$$

cvx windowed elitist lasso:

$$egin{aligned} \Omega_{\textit{wel}}(oldsymbol{lpha}) &= \sum_{k=1}^N \left(\sum_{\ell \in \mathcal{N}(k)} w_\ell^{(k)} |lpha_\ell|
ight)^2 \ &= \|\mathbf{E}oldsymbol{lpha}\|_{12}^2 \end{aligned}$$

A convex functional for social sparsity

A natural convex functional is (aka group-Lasso with overlaps [Bayram 11])

$$F(\boldsymbol{\alpha}) = \frac{1}{2} \|\mathbf{y} - \mathbf{\Phi}\boldsymbol{\alpha}\|^2 + \lambda \|\mathbf{E}\boldsymbol{\alpha}\|_{21}$$

one can look for

$$\hat{\alpha} = \underset{\boldsymbol{\alpha} \in \mathbb{C}^{N}}{\operatorname{argmin}} F(\boldsymbol{\alpha})$$
$$= \mathbf{E}^{T} \underset{\mathbf{u}}{\operatorname{argmin}} \frac{1}{2} \| \mathbf{y} - \mathbf{\Phi} \mathbf{E}^{T} \mathbf{z} \|^{2} + \lambda \| \mathbf{z} \|_{21}$$
s.t $\mathbf{E} \mathbf{E}^{T} \mathbf{z} = \mathbf{z}$

- Similar functional introduced by [Peyré & Fadili 11].
- several approach can be used to minimize F (ISTA + Douglas Rachford, augmented lagrangian...)

But: this penalty acts as a *discarding* procedure, not a *selection*.

G-Lasso with overlaps VS latent-G-Lasso

Instead of

$$F(\boldsymbol{lpha}) = rac{1}{2} \| \mathbf{y} - \mathbf{\Phi} \boldsymbol{lpha} \|^2 + \lambda \| \mathbf{E} \boldsymbol{lpha} \|_{21}$$

[Jacob & al. 09] propose to minimize

$$F(ilde{lpha}) = rac{1}{2} \| \mathbf{y} - \mathbf{\Phi} \mathbf{E}^T ilde{lpha} \|^2 + \lambda \| ilde{lpha} \|_{21}$$

to obtain a *selection* of active groups.

Curse of dimension in both cases !

Link between the convex functional and our shrinkages

ISTA with WG-Lasso becomes:

$$\begin{aligned} \mathbf{z}^{(k)} &= \mathbf{E}\mathbf{D} \operatorname{prox}_{\frac{\lambda}{\gamma} \|\cdot\|_{*}} \left(\left(\tilde{\mathbf{z}}^{(k-1)} \right) \right) \\ \boldsymbol{\alpha}^{k} &= \mathbf{D}\mathbf{z}^{k} \end{aligned}$$
where $\tilde{\mathbf{z}}^{(k-1)} &= \mathbf{z}^{(k-1)} + \frac{\mathbf{E}}{\gamma} \mathbf{\Phi}^{*} (\mathbf{y} - \mathbf{\Phi} \mathbf{E}^{\mathsf{T}} \mathbf{z}^{(k-1)}) \end{aligned}$

It is a proximal descent followed by an *oblique* projection on Im(E).

conjecture

ISTA with WG-Lasso converges to a fixed point.

Orthogonal social sparsity

An Orthogonal version

$$\begin{split} \mathbf{z}^{(k)} &= \mathbf{E}\mathbf{E}^{\mathcal{T}} \operatorname{prox}_{\frac{\lambda}{\gamma} \parallel \cdot \parallel_{*}} \left(\left(\tilde{\mathbf{z}}^{(k-1)} \right) \right) \\ \text{where} \quad \tilde{\mathbf{z}}^{(k-1)} &= \mathbf{z}^{(k-1)} + \frac{\mathbf{E}}{\gamma} \mathbf{\Phi}^{*} (\mathbf{y} - \mathbf{\Phi} \mathbf{E}^{\mathcal{T}} \mathbf{z}^{(k-1)}) \end{split}$$

orth-WG-Lasso

$$\alpha_k = \tilde{y}_k \sum_j \frac{1}{w_j^j} \left(1 - \frac{\lambda}{\sqrt{\sum\limits_{j' \in \mathcal{N}(j)} w_{j'}^{(j)} |\tilde{y}_{k'}|^2}} \right)^+ .$$

$$\mathsf{WG-Lasso}: \ \ \hat{\alpha}_k = \tilde{y}_k \left(1 - \frac{\lambda}{\sqrt{\sum\limits_{m \in \mathcal{G}(k)} |\tilde{y}_m|^2}}\right)^+$$

A family of shrinkage operators

 $lpha = \mathbb{S}(\mathbf{y})$ is given coordinatewise:

Lasso:

$$\alpha_k = y_k \left(1 - \frac{\lambda}{|y_k|} \right)^+$$

• NNGarrote / Empirical Wiener

$$\alpha_k = y_k \left(1 - \frac{\lambda}{|y_k|^2} \right)^+$$

• Windowed Group Lasso

$$\alpha_k = \tilde{y}_k \left(1 - \frac{\lambda}{\|\tilde{y}_{g(k)}\|_2} \right)^+$$

• Empirical Persistent Wiener [Siedenburg 13]

$$\alpha_k = \tilde{y}_k \left(1 - \frac{\lambda}{\|\tilde{y}_{g(k)}\|_2^2} \right)^+$$

1 Introduction: sparse approximation

2 An optimization framework

- General approach
- Mixed Norms
- Hybrid (or multilayers) models

Iterative Thresholding

- Thresholding functions
- Neighborhood thresholding

4 Numerical results

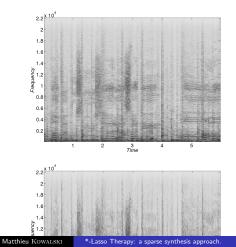
- Application to tonal/transicent separation
- Simulations
- Audio declipping

5 Conclusion

Tonal/transcient separation - 1

Excerpt of *Mamavatu* from Susheela Raman. Length of windows analysis for MDCT:

- For tonal layer: 4096 samples (93 ms) (Left)
- For transicent layer: 128 samples (3 ms) (Right)



mulations Audio declipping

Tonal/transcient separation - 2

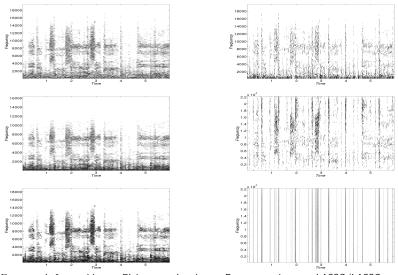


FIGURE : Left: tonal layers. Right: transcient layers. From top to bottom: LASSO/LASSO, LASSO/ELASSO, LASSO/GLASSO.

Introduction: sparse approximation

- 2 An optimization framework
 - General approach
 - Mixed Norms
 - Hybrid (or multilayers) models
- 3 Iterative Thresholding
 - Thresholding functions
 - Neighborhood thresholding

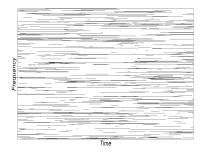
4 Numerical results

- Application to tonal/transicent separation
- Simulations
- Audio declipping

5 Conclusion

ntroduction: sparse approximation An optimization framework Iterative Thresholding Numerical results Conclusion
Application to tonal/transicent separation
Audio declipping

Simulation of structured sparse signals



 $\begin{array}{l} {\rm FIGURE}: \ A \ structured \ sparse \ significance \ map \ \Delta \\ generated \ by \ Markov \ chain. \end{array}$

Simulated signal:

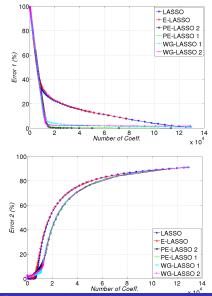
$$y = \sum_{(t,f)\in\Delta} x_{(t,f)}\varphi_{(t,f)} + b ,$$

with:

- Δ the significance map generated by Markov chain.
- For $(t, f) \in \Delta$, $x_{(t,f)} \sim \mathcal{N}(0, \sigma^2)$.
- *b* a white gaussian noise.

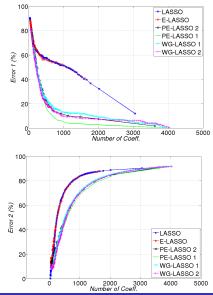
Introduction: sparse approximation An optimization framework Iterative Thresholding Numerical results Conclusion
Application to tonal/transicent separation
Audio declipping

Orthogonal case



Introduction: sparse approximation An optimization framework Iterative Thresholding Numerical results Conclusion Application to tonal/transicent separation Audio declipping

Frame case



1 Introduction: sparse approximation

2 An optimization framework

- General approach
- Mixed Norms
- Hybrid (or multilayers) models

Iterative Thresholding

- Thresholding functions
- Neighborhood thresholding

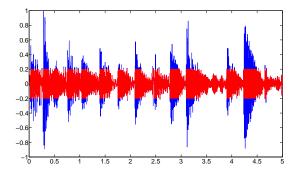
Numerical results

- Application to tonal/transicent separation
- Simulations
- Audio declipping

5 Conclusion

Introduction: sparse approximation An optimization framework Iterative Thresholding Numerical results Conclusion Application to tonal/transicent separation Simulations

Audio Declipping



Audio inpainting: forward problem [A. Adler, V. Emiya et Al]

$$\mathbf{y}^r = \mathbf{M}^r \mathbf{x}$$

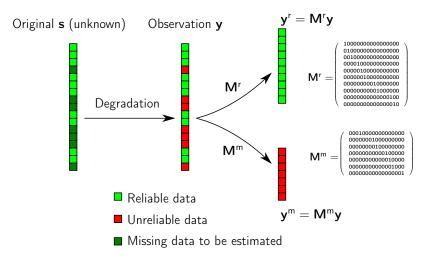
where

- $\mathbf{x} \in \mathbb{R}^N$ is the unknown "clean" signal;
- $\mathbf{y}^r \in \mathbb{R}^M$ are the "reliable" sample of the observed signal
- $\mathbf{M}^{r} \in \mathbb{R}^{M imes N}$ is the matrix of the reliable support of \mathbf{x}

we can also define the missing samples as

$$\mathbf{y}^m = \mathbf{M}^m \mathbf{x}$$

Reliable vs Unreliable coeff.



Audio declipping: (constrained and convex) inverse problem

For audio declipping, we can add the following constraint

$$\begin{split} \hat{\boldsymbol{\alpha}} &= \operatorname*{argmin}_{\boldsymbol{\alpha}} \frac{1}{2} \| \boldsymbol{y}^{r} - \boldsymbol{\mathsf{M}}^{r} \boldsymbol{\Phi} \boldsymbol{\alpha} \| + \lambda \| \boldsymbol{\alpha} \|_{1} \\ \text{s.t.} \quad \boldsymbol{\mathsf{M}}^{m^{+}} \boldsymbol{\Phi} \boldsymbol{\alpha} > \theta^{clip} \\ \qquad \boldsymbol{\mathsf{M}}^{m^{-}} \boldsymbol{\Phi} \boldsymbol{\alpha} < \theta^{clip} \end{split}$$

where \mathbf{M}^{m^+} (resp. \mathbf{M}^{m^-}) select the positive (resp. negative) samples.

Problem: cannot be solved "efficiently" with (F)ISTA

Audio declipping: (convex unconstrained) inverse problem

Let

$$[\boldsymbol{\theta}^{clip} - \mathbf{x}]_+^2 = \sum_{k:\theta_k^{clip} > 0} (\theta_k^{clip} - x_k)_+^2 + \sum_{k:\theta_k^{clip} < 0} (-\theta_k^{clip} + x_k)_+^2$$

We consider the following unconstrained convex problem:

$$\alpha = \underset{\alpha}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{y}^{r} - \mathbf{M}^{r} \mathbf{\Phi} \alpha\|_{2}^{2} + \frac{1}{2} [\boldsymbol{\theta}^{clip} - \mathbf{M}^{m} \mathbf{\Phi} \alpha]_{+}^{2} + P(\alpha; \lambda)$$
which is under the form

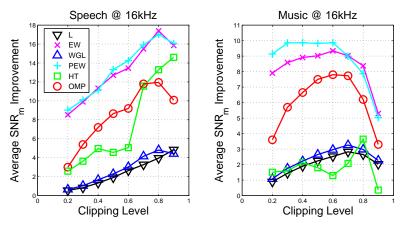
 $f_1(\alpha) + f_2(\alpha)$

with f_1 Lipschitz-differentiable and f_2 semi-convex.

We can apply (relaxed)-ISTA directly !

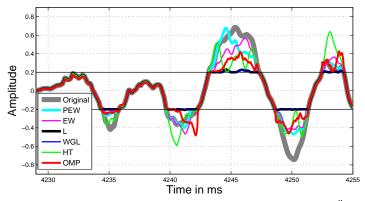
ntroduction: sparse approximation An optimization framework Iterative Thresholding Numerical results Conclusion Application to tonal/transicent separation Simulations

Numerical results



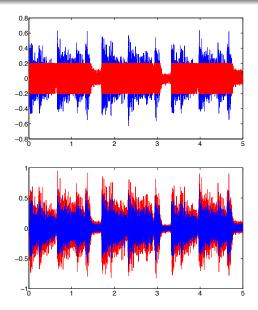
Average SNR_{miss} for 10 speech (left) and music (right) signals over different clipping levels and operators. Neighborhoods extend 3 and 7 coefficients in time for speech and music signals, respectively.

Numerical results: zoom on reconstructions



Declipped music signal using different operators for clip level $\theta^{clip} = 0.2$ using the Lasso, WGL, EW, PEW, HT, and OMP operators. Neighborhood size for WGL and PEW was 7.

Original Vs clipped Vs declipped Signal



Introduction: sparse approximation

2 An optimization framework

- General approach
- Mixed Norms
- Hybrid (or multilayers) models

3 Iterative Thresholding

- Thresholding functions
- Neighborhood thresholding

4 Numerical results

- Application to tonal/transicent separation
- Simulations
- Audio declipping

5 Conclusion

Conclusion

Take home messages

- Use dictionary to get sparsity
- Play on thresholding rules in ISTA
- Define some neighborhoods for "flexible" structures

Next...

- Some practical issues (warm start: how many iterations, λ)
- Some theoretical issues (more on convergence)