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PROBLEM

» Letx € R" be a s—sparse vector, ie such that ||x||, = s
» Let A € RMYN be a measurement matrix, and let
y = AXx

» When can x be exactly recovered from y ?

All the presented results and much more can be found in:
A Mathematical Introduction to Compressive Sensing, S. Foucart & H. Rauhut
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REMINDER: ALGORITHMS

» Matching Pursuit and Orthogonal Matching Pursuit
» Basis Pursuit

» Iterative Thresholding
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NULL SPACE PROPERTY

» Let A € RMY be a matrix with normalized columns (||a,||, = 1 Vi).
» A satisfies the null space property (NSP) relative to a set S iff

|1vll; < |[vs]l; for all v € ker(A)\{O}
» Equivalently, A € RMVsatisfies the NSP relative to a set S iff

2||vsll; £ |vll; forall v € ker(A)\{O}

» A satisfies the null space property of order s if ti satisfies the NSP for all § such that card(S) < s
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NULL SPACE AND S-SPARSE RECOVERY

» Given a matrix A € RMY, every vector x € R such that supp(x) = S is the unique solution of

y = Ax iff A satisfies the NSP relative to §

» Given a matrix A € RMY, every vector s—sparse vector x € R" is the unique solution of y = Ax
iff A satisfies the NSP of order s
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PROOF

» Suppose that for all x supported on §, x is the unique minimizer of ||z||; 5.7 Ax = Az.

Let v € ker(A)\{0}, vs is then the unique minimizer of ||z||, 5.7 Avy = Az.
Moreover, we have 0 = Av = A(vg + v¢), then A(—vs) = Avg and necessarily we have ||vg||; < ||[vsl|;
by unicity of vq. Then A satisfies the NSP relative to §

» Suppose that A satisfies the NSP relative to S. Let x supported on S and a vector z # x such that
Ax =Az. Thenv =x—z € Ker(A)\{0}. Then

1xl{ = |lx — z¢ + z6ll1 < |lx — z4lly + Nzglly = lvsll; + llzslly < llvsll; + [zl (because of the NSP)
lxll; < llzslly + llzgll; = llzll;, then x minimizes ||x||,
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COHERENCE: DEFINITION

» Let A € RMY be a matrix with normalized columns (||a,||, = 1 Vi).
» The coherence u = u(A) of the matrix A is given by

H = maX ‘ <ai9 Cl]> |
7]

» Remark: u <1
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COHERENCE: PROPERTIES

» Let A € RMN be a matrix with normalized columns. Then

. [N-M
=\ M= 1

» The equality holds iff A is an equi-angular tight frame (ie (g, a;) = Cte (Vi # j) )
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COHERENCE AND SPARSE RECOVERY

» Let A € RMY be a matrix with normalized columns. Then, every s—sparse vectors x can be

recovered from y = Ax by the basis pursuit and the matching pursuit algorithms if

|
<
AN |

M
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BABEL FUNCTION: DEFINITION

» Let A € RMY be a matrix with normalized columns (||a,||, = 1 Vi).
» The babel-1 function, or £;-coherence y,(s) of the matrix A is given by
p1(s) = max max { Z [ {a;,a;) |, card(S) = s,i & S
l ies

» Remark: u < p(s) < su

|
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BABEL-1 FUNCTION AND SPARSE RECOVERY

» Let A € RMY be a matrix with normalized columns. Then, every s—sparse vectors x can be

recovered from y = Ax by the basis pursuit and the matching pursuit algorithms if

ui(s) +pus—1)<1
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PROOF FOR BP

Let v € Ker(A))\{0}. ThenAv =0 & Z av; = 0. Let a set § such that card(S) = s and let k € §. Then

(4, Av) = Z vilap, a;) = 0, then v = vilay, i) = — Z vila, q) = — Z vildy a) = Z vi{ay, a)

l l ieS 1E€S,1#£k
Consequently, we have |v,| < ) [v,|[{aza) |+ D [vill{a.a))
ieS 1E€S,1Fk
Finally [|v]]; = Z Vel < 2 17, \Z (apad |+ ), D, v \Z (@i a) | < 1vsllin() + vl (s = 1D
ieS k 1€S,i#k
Which leads to
I — (s —1) . .
vl < 1vell; < |lvslly, i-e. A satisfies the NSP

Hi(s)
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BABEL-1 FUNCTION AND SPARSE RECOVERY

» Let A € RMY be a matrix with normalized columns. Then, every s—sparse vectors x can be

recovered from y = Ax by one step of Hard Thresholding if

min,q | X; |

pu(s) +p(s — 1) <
max;cg | x; |

Where § = supp(x)
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PROOF

» We have to show that Vk € S, Vj € S |{(a,, y)| > | (a,y)|.ie [{Ax,aq;) | > [(Ax, a;) |

, (A a) | =1 xda,a)| < Q) 1x11(a, @) | < puy(s) max | x|

IES IES

[Axa) | =1 xanad > 51— Y |x511(g.a) | > min|x| - (s — 1) max ||
. e, €S IES
€S 1ES,1#]

y Then |[(Ax,q;)| — | (Ax, Cle > Hélb{l | x; | — (uq(s) + py (s — 1)) mégx | x;| >0
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BABEL-1 FUNCTION AND SPARSE RECOVERY

» Let A € RMN be a matrix with normalized columns. Then, every s—sparse vectors x can be recovered

from y = Ax by at most s iterations of the iterated Hard Thresholding if

2ui(s) + (s —1) <1
Where § = supp(x)

» IHT:
XD — H (x(t) + A*(y —Ax(t)))

Where #Z (x) keeps the s largest magnitude value of x
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RESTRICTED ISOMETRY CONSTANT (RIC)

» The sth restricted isometry constant §, of a matrix A € RM" is the smallest § > 0 such that
(1 = &lxll” < NAxN* < (1 + 8)lIxll*
For all s—sparse vector x € RY

» Equivalently

o,= max |[AXA, — ]
s.card(s)<s
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RIC

» The RIC o, are increasing
» If A has normalized columns, a coherence i and a Babel-1 function y, then

01 = 0,0, = u, 0y < py(s — 1)
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RESTRICTED ISOMETRY PROPERTY (RIP) AND BP

1
y Let A such that o, < 3

» Then every s—sparse vector x is the unique solution of

min ||z|]|; s.t. Ax =Az
<
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RESTRICTED ISOMETRY PROPERTY (RIP) AND IRT

1
y Let A such that 05, < —
ST 2

» Then, for every s—sparse vector x such that y = Ax, the IHT initialized by a s— sparse vector

converges to x

» IHT:
Xt — H (x(f) + A*(y —Ax(t)))

Where #Z (x) keeps the s largest magnitude value of x
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COHERENCE OR RIP ?

» Coherence: easy to check, but very restrictive (few matrix satisfies coherence properties)
» RIP: difficult to check. Satisfied with some random matrices

» Application: compressive sensing



