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SPARSE REPRESENTATION — ATSI

PROBLEM

‣ Let   be a  sparse vector, ie such that   

‣ Let   be a measurement matrix, and let  

  

‣ When can   be exactly recovered from   ? 

All the presented results and much more can be found in: 
 A Mathematical Introduction to Compressive Sensing, S. Foucart & H. Rauhut

x ∈ ℝN s− ∥x∥0 = s

A ∈ ℝMN

y = Ax

x y
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SPARSE REPRESENTATION — ATSI

REMINDER: ALGORITHMS

▸ Matching Pursuit and Orthogonal Matching Pursuit 

▸ Basis Pursuit 

▸ Iterative Thresholding
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SPARSE REPRESENTATION — ATSI

NULL SPACE PROPERTY

▸ Let   be a matrix with normalized columns ( ).  

▸ A satisfies the null space property (NSP) relative to a set   iff 

  for all   

▸ Equivalently,  satisfies the NSP relative to a set   iff 

 for all   

▸ A satisfies the null space property of order   if ti satisfies the NSP for all   such that  

A ∈ ℝMN ∥ai∥2 = 1 ∀i

S

∥vS∥1 < ∥vS̄∥1 v ∈ ker(A)\{0}

A ∈ ℝMN S

2∥vS∥1 ≤ ∥v∥1 v ∈ ker(A)\{0}

s S card(S) ≤ s
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SPARSE REPRESENTATION — ATSI

NULL SPACE AND S-SPARSE RECOVERY

▸ Given a matrix  , every vector   such that   is the unique solution of 
  iff   satisfies the NSP relative to   

▸ Given a matrix  , every vector  sparse vector   is the unique solution of   
iff   satisfies the NSP of order  

A ∈ ℝMN x ∈ ℝN supp(x) = S
y = Ax A S

A ∈ ℝMN s− x ∈ ℝN y = Ax
A s
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SPARSE REPRESENTATION — ATSI

PROOF 

▸ Suppose that for all   supported on  ,   is the unique minimizer of   .  

Let  ,   is then the unique minimizer of   .  
Moreover, we have  , then   and necessarily we have   
by unicity of  . Then   satisfies the NSP relative to   

‣ Suppose that   satisfies the NSP relative to  . Let   supported on   and a vector   such that 
 . Then  . Then 

  (because of the NSP) 
 , then   minimizes   

x S x ∥z∥1 s . t Ax = Az

v ∈ ker(A)\{0} vS ∥z∥1 s . t AvS = Az
0 = Av = A(vS̄ + vS) A(−vS̄) = AvS ∥vS∥1 < ∥vS̄∥1

vS A S

A S x S z ≠ x
Ax = Az v = x − z ∈ Ker(A)\{0}

∥x∥1 = ∥x − zS + zS∥1 ≤ ∥x − zS∥1 + ∥zS∥1 = ∥vS∥1 + ∥zS∥1 < ∥vS̄∥1 + ∥zS∥1
∥x∥1 < ∥zS̄∥1 + ∥zS∥1 = ∥z∥1 x ∥x∥1
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SPARSE REPRESENTATION — ATSI

COHERENCE: DEFINITION

▸ Let   be a matrix with normalized columns ( ).  

▸ The coherence   of the matrix   is given by 

   

‣ Remark:  

A ∈ ℝMN ∥ai∥2 = 1 ∀i

μ = μ(A) A

μ = max
i≠j

|⟨ai, aj⟩ |

μ ≤ 1
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SPARSE REPRESENTATION — ATSI

COHERENCE: PROPERTIES

▸ Let   be a matrix with normalized columns. Then 

  

‣ The equality holds iff   is an equi-angular tight frame (ie   )

A ∈ ℝMN

μ ≥
N − M

M(N − 1)

A ⟨ai, aj⟩ = Cte (∀i ≠ j)
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SPARSE REPRESENTATION — ATSI

COHERENCE AND SPARSE RECOVERY

▸ Let   be a matrix with normalized columns. Then, every  sparse vectors x can be 
recovered from   by the basis pursuit and the matching pursuit algorithms if 

 

A ∈ ℝMN s−
y = Ax

μ <
1

2s − 1
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SPARSE REPRESENTATION — ATSI

BABEL FUNCTION: DEFINITION

▸ Let   be a matrix with normalized columns ( ).  

▸ The babel-1 function, or  -coherence   of the matrix   is given by 

   

‣ Remark:  

A ∈ ℝMN ∥ai∥2 = 1 ∀i

ℓ1 μ1(s) A

μ1(s) = max
i

max ∑
j∈S

|⟨ai, aj⟩ | , card(S) = s, i ∉ S

μ ≤ μ1(s) ≤ sμ
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SPARSE REPRESENTATION — ATSI

BABEL-1 FUNCTION AND SPARSE RECOVERY

▸ Let   be a matrix with normalized columns. Then, every  sparse vectors x can be 
recovered from   by the basis pursuit and the matching pursuit algorithms if 

 

A ∈ ℝMN s−
y = Ax

μ1(s) + μ1(s − 1) < 1
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SPARSE REPRESENTATION — ATSI

PROOF FOR BP

Let  . Then  . Let a set   such that   and let  . Then 

 , then   

Consequently, we have   

Finally   

Which leads to 

 , i.e.   satisfies the NSP

v ∈ Ker(A)\{0} Av = 0 ⇔ ∑
i

aivi = 0 S card(S) = s k ∈ S

⟨ak, Av⟩ = ∑
i

vi⟨ak, ai⟩ = 0 vk = vk⟨ak, ak⟩ = − ∑
i≠k

vi⟨ai, ak⟩ = − ∑
i∈S̄

vi⟨ai, ak⟩ − ∑
i∈S,i≠k

vi⟨ai, ak⟩

|vk | ≤ ∑
i∈S̄

|vi | |⟨ai, ak⟩ | + ∑
i∈S,i≠k

|vi | |⟨ai, ak⟩ |

∥v∥1 = ∑
k

|vk | < ∑
i∈S̄

|vi |∑
k

|⟨ai, ak⟩ | + ∑
k

∑
i∈S,i≠k

|vi |∑
k

|⟨ai, ak⟩ | < ∥vS̄∥1μ1(s) + ∥vS∥1μ1(s − 1)

∥vS∥1 <
1 − μ1(s − 1)

μ1(s)
∥vS∥1 < ∥vS̄∥1 A
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SPARSE REPRESENTATION — ATSI

BABEL-1 FUNCTION AND SPARSE RECOVERY

▸ Let   be a matrix with normalized columns. Then, every  sparse vectors x  can be 
recovered from   by one step of Hard Thresholding if 

  

Where  

A ∈ ℝMN s−
y = Ax

μ1(s) + μ1(s − 1) <
mini∈S |xi |
maxi∈S |xi |

S = supp(x)
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SPARSE REPRESENTATION — ATSI

PROOF

▸ We have to show that  ,    , ie   

▸   

▸   

▸ Then  

∀k ∈ S ∀j ∈ S̄ |⟨ak, y⟩ | > |⟨aj, y⟩ | |⟨Ax, ak⟩ | > |⟨Ax, aj⟩ |

|⟨Ax, aj⟩ | = |∑
i∈S

xi⟨ai, aj⟩ | ≤ ∑
i∈S

|xi | |⟨ai, aj⟩ | ≤ μ1(s) max
i∈S

|xi |

|⟨Ax, ak⟩ | = |∑
i∈S

xi⟨ai, ak⟩ | ≥ |xj | − ∑
i∈S,i≠j

|xi | |⟨ai, ak⟩ | ≥ min
i∈S

|xi | − μ1(s − 1) max
i∈S

|xi |

|⟨Ax, ak⟩ | − |⟨Ax, aj⟩ | ≥ min
i∈S

|xi | − (μ1(s) + μ1(s − 1)) max
i∈S

|xi | > 0
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SPARSE REPRESENTATION — ATSI

BABEL-1 FUNCTION AND SPARSE RECOVERY

▸ Let   be a matrix with normalized columns. Then, every  sparse vectors x  can be recovered 
from   by at most   iterations of the iterated Hard Thresholding if 

  

Where   

▸ IHT:  

  

Where   keeps the   largest magnitude value of   

A ∈ ℝMN s−
y = Ax s

2μ1(s) + μ1(s − 1) < 1

S = supp(x)

x(t+1) = ℋs (x(t) + A*(y − Ax(t)))
ℋs(x) s x
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SPARSE REPRESENTATION — ATSI

RESTRICTED ISOMETRY CONSTANT (RIC)

▸ The  th restricted isometry constant   of a matrix   is the smallest   such that  

  

For all  sparse vector   

‣ Equivalently  

 

s δs A ∈ ℝMN δ ≥ 0

(1 − δ)∥x∥2 ≤ ∥Ax∥2 ≤ (1 + δ)∥x∥2

s− x ∈ ℝN

δs = max
S,card(S)≤s

∥A*s As − Id∥
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SPARSE REPRESENTATION — ATSI

RIC

▸ The RIC   are increasing 

▸ If   has normalized columns, a coherence   and a Babel-1 function  , then 

 ,  ,  

δs

A μ μ1

δ1 = 0 δ2 = μ δs ≤ μ1(s − 1)
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SPARSE REPRESENTATION — ATSI

RESTRICTED ISOMETRY PROPERTY (RIP) AND BP

▸ Let   such that   

▸ Then every  sparse vector   is the unique solution of  

     s.t.     

A δ2s ≤
1
3

s− x

min
z

∥z∥1 Ax = Az
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SPARSE REPRESENTATION — ATSI

RESTRICTED ISOMETRY PROPERTY (RIP) AND IHT

▸ Let   such that   

▸ Then, for every  sparse vector   such that  , the IHT initialized by a   sparse vector 
converges to   

▸ IHT:  

   

Where   keeps the   largest magnitude value of   

A δ3s ≤
1
2

s− x y = Ax s−
x

x(t+1) = ℋs (x(t) + A*(y − Ax(t)))
ℋs(x) s x
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SPARSE REPRESENTATION — ATSI

COHERENCE OR RIP ?

▸ Coherence: easy to check, but very restrictive (few matrix satisfies coherence properties) 

▸ RIP: difficult to check. Satisfied with some random matrices 

▸ Application: compressive sensing

 21


