SPARSE RECOVER
 SPARSE REPRESENTATIONS

SPARSE RECOVERY

PROBLEM

- Let $x \in \mathbb{R}^{N}$ be a s-sparse vector, ie such that $\|x\|_{0}=s$
- Let $A \in \mathbb{R}^{M N}$ be a measurement matrix, and let

$$
y=A x
$$

When can x be exactly recovered from y ?

All the presented results and much more can be found in: A Mathematical Introduction to Compressive Sensing, S. Foucart \& H. Rauhut

REMINDER: ALGORITHMS

> Matching Pursuit and Orthogonal Matching Pursuit

- Basis Pursuit
> Iterative Thresholding

NULL SPACE PROPERTY

- Let $A \in \mathbb{R}^{M N}$ be a matrix with normalized columns ($\left.\left\|a_{i}\right\|_{2}=1 \forall i\right)$.
- A satisfies the null space property (NSP) relative to a set S iff

$$
\left\|v_{S}\right\|_{1}<\left\|v_{\bar{s}}\right\|_{1} \text { for all } v \in \operatorname{ker}(A) \backslash\{0\}
$$

- Equivalently, $A \in \mathbb{R}^{M N}$ satisfies the NSP relative to a set S iff

$$
2\left\|v_{s}\right\|_{1} \leq\|v\|_{1} \text { for all } v \in \operatorname{ker}(A) \backslash\{0\}
$$

- A satisfies the null space property of order s if ti satisfies the NSP for all S such that $\operatorname{card}(S) \leq s$

NULL SPACE AND S-SPARSE RECOVERY

, Given a matrix $A \in \mathbb{R}^{M N}$, every vector $x \in \mathbb{R}^{N}$ such that $\operatorname{supp}(x)=S$ is the unique solution of $y=A x$ iff A satisfies the NSP relative to S

- Given a matrix $A \in \mathbb{R}^{M N}$, every vector s-sparse vector $x \in \mathbb{R}^{N}$ is the unique solution of $y=A x$ iff A satisfies the NSP of order s

PROOF

- Suppose that for all x supported on S, x is the unique minimizer of $\|z\|_{1}$ s. $t A x=A z$.

Let $v \in \operatorname{ker}(A) \backslash\{0\}, v_{S}$ is then the unique minimizer of $\|z\|_{1}$ s.t $A v_{S}=A z$.
Moreover, we have $0=A v=A\left(v_{\bar{S}}+v_{S}\right)$, then $A\left(-v_{\bar{S}}\right)=A v_{S}$ and necessarily we have $\left\|v_{s}\right\|_{1}<\left\|v_{\bar{s}}\right\|_{1}$ by unicity of v_{S}. Then A satisfies the NSP relative to S

- Suppose that A satisfies the NSP relative to S. Let x supported on S and a vector $z \neq x$ such that $A x=A z$. Then $v=x-z \in \operatorname{Ker}(A) \backslash\{0\}$. Then
$\|x\|_{1}=\left\|x-z_{S}+z_{S}\right\|_{1} \leq\left\|x-z_{S}\right\|_{1}+\left\|z_{S}\right\|_{1}=\left\|v_{S}\right\|_{1}+\left\|z_{S}\right\|_{1}<\left\|v_{\bar{s}}\right\|_{1}+\left\|z_{S}\right\|_{1}$ (because of the NSP) $\|x\|_{1}<\left\|z_{\bar{s}}\right\|_{1}+\left\|z_{s}\right\|_{1}=\|z\|_{1}$, then x minimizes $\|x\|_{1}$

COHERENCE: DEFINTION

Let $A \in \mathbb{R}^{M N}$ be a matrix with normalized columns ($\left.\left\|a_{i}\right\|_{2}=1 \forall i\right)$.
, The coherence $\mu=\mu(A)$ of the matrix A is given by

$$
\mu=\max _{i \neq j}\left|\left\langle a_{i}, a_{j}\right\rangle\right|
$$

- Remark: $\mu \leq 1$

COHERENCE: PROPERTIES

- Let $A \in \mathbb{R}^{M N}$ be a matrix with normalized columns. Then

$$
\mu \geq \sqrt{\frac{N-M}{M(N-1)}}
$$

- The equality holds iff A is an equi-angular tight frame (ie $\left\langle a_{i}, a_{j}\right\rangle=$ Cte $(\forall i \neq j)$)

COHERENCE AND SPARSE RECOVERY

- Let $A \in \mathbb{R}^{M N}$ be a matrix with normalized columns. Then, every $s-$ sparse vectors x can be recovered from $y=A x$ by the basis pursuit and the matching pursuit algorithms if

$$
\mu<\frac{1}{2 s-1}
$$

BABEL FUNCTION: DEFINTION

- Let $A \in \mathbb{R}^{M N}$ be a matrix with normalized columns ($\left.\left\|a_{i}\right\|_{2}=1 \forall i\right)$.
- The babel- 1 function, or ℓ_{1}-coherence $\mu_{1}(s)$ of the matrix A is given by

$$
\mu_{1}(s)=\max _{i} \max \left\{\sum_{j \in S}\left|\left\langle a_{i}, a_{j}\right\rangle\right|, \operatorname{card}(S)=s, i \notin S\right\}
$$

- Remark: $\mu \leq \mu_{1}(s) \leq s \mu$

BABEL-1 FUNCTION AND SPARSE RECOVERY

- Let $A \in \mathbb{R}^{M N}$ be a matrix with normalized columns. Then, every s-sparse vectors x can be recovered from $y=A x$ by the basis pursuit and the matching pursuit algorithms if

$$
\mu_{1}(s)+\mu_{1}(s-1)<1
$$

PROOF FOR BP

Let $v \in \operatorname{Ker}(A) \backslash\{0\}$. Then $A v=0 \Leftrightarrow \sum a_{i} v_{i}=0$. Let a set S such that $\operatorname{card}(S)=s$ and let $k \in S$. Then $\left\langle a_{k}, A v\right\rangle=\sum_{i} v_{i}\left\langle a_{k}, a_{i}\right\rangle=0$, then $v_{k}=v_{k}\left\langle a_{k}, a_{k}\right\rangle=-\sum_{i \neq k} v_{i}\left\langle a_{i}, a_{k}\right\rangle=-\sum_{i \in \bar{S}} v_{i}\left\langle a_{i}, a_{k}\right\rangle-\sum_{i \in S, i \neq k} v_{i}\left\langle a_{i}, a_{k}\right\rangle$
Consequently, we have $\left|v_{k}\right| \leq \sum_{i \in \bar{S}}\left|v_{i}\right|\left|\left\langle a_{i}, a_{k}\right\rangle\right|+\sum_{i \in S, i \neq k}^{i \neq k}\left|v_{i}\right|\left|\left\langle a_{i}, a_{k}\right\rangle\right|$
Finally $\|v\|_{1}=\sum_{k}\left|v_{k}\right|<\sum_{i \in \bar{S}}\left|v_{i}\right| \sum_{k}\left|\left\langle a_{i}, a_{k}\right\rangle\right|+\sum_{k} \sum_{i \in S, i \neq k}\left|v_{i}\right| \sum_{k}\left|\left\langle a_{i}, a_{k}\right\rangle\right|<\left\|v_{\bar{s}}\right\|_{1} \mu_{1}(s)+\left\|v_{s}\right\|_{1} \mu_{1}(s-1)$
Which leads to
$\left\|v_{S}\right\|_{1}<\frac{1-\mu_{1}(s-1)}{\mu_{1}(s)}\left\|v_{S}\right\|_{1}<\left\|v_{\bar{S}}\right\|_{1}$, i.e. A satisfies the NSP

BABEL-1 FUNCTION AND SPARSE RECOVERY

- Let $A \in \mathbb{R}^{M N}$ be a matrix with normalized columns. Then, every $s-$ sparse vectors x can be recovered from $y=A x$ by one step of Hard Thresholding if

$$
\mu_{1}(s)+\mu_{1}(s-1)<\frac{\min _{i \in S}\left|x_{i}\right|}{\max _{i \in S}\left|x_{i}\right|}
$$

Where $S=\operatorname{supp}(x)$

PROOF
, We have to show that $\forall k \in S, \forall j \in \bar{S}\left|\left\langle a_{k}, y\right\rangle\right|>\left|\left\langle a_{j}, y\right\rangle\right|$, ie $\left|\left\langle A x, a_{k}\right\rangle\right|>\left|\left\langle A x, a_{j}\right\rangle\right|$
$\left|\left\langle A x, a_{j}\right\rangle\right|=\left|\sum_{i \in S} x_{i}\left\langle a_{i}, a_{j}\right\rangle\right| \leq \sum_{i \in S}\left|x_{i}\right|\left|\left\langle a_{i}, a_{j}\right\rangle\right| \leq \mu_{1}(s) \max _{i \in S}\left|x_{i}\right|$
$\left|\left\langle A x, a_{k}\right\rangle\right|=\left|\sum_{i \in S} x_{i}\left\langle a_{i}, a_{k}\right\rangle\right| \geq\left|x_{j}\right|-\sum_{i \in S, i \neq j}\left|x_{i}\right|\left|\left\langle a_{i}, a_{k}\right\rangle\right| \geq \min _{i \in S}\left|x_{i}\right|-\mu_{1}(s-1) \max _{i \in S}\left|x_{i}\right|$
Then $\left|\left\langle A x, a_{k}\right\rangle\right|-\left|\left\langle A x, a_{j}\right\rangle\right| \geq \min _{i \in S}\left|x_{i}\right|-\left(\mu_{1}(s)+\mu_{1}(s-1)\right) \max _{i \in S}\left|x_{i}\right|>0$

BABEL-1 FUNCTION AND SPARSE RECOVERY

Let $A \in \mathbb{R}^{M N}$ be a matrix with normalized columns. Then, every $s-$ sparse vectors x can be recovered from $y=A x$ by at most s iterations of the iterated Hard Thresholding if

$$
2 \mu_{1}(s)+\mu_{1}(s-1)<1
$$

Where $S=\operatorname{supp}(x)$
, IHT:

$$
x^{(t+1)}=\mathscr{H}_{s}\left(x^{(t)}+A^{*}\left(y-A x^{(t)}\right)\right)
$$

Where $\mathscr{H}_{s}(x)$ keeps the s largest magnitude value of x

RESTRICTED ISOMETRY CONSTANT (RIC)

The s th restricted isometry constant δ_{s} of a matrix $A \in \mathbb{R}^{M N}$ is the smallest $\delta \geq 0$ such that

$$
(1-\delta)\|x\|^{2} \leq\|A x\|^{2} \leq(1+\delta)\|x\|^{2}
$$

For all s-sparse vector $x \in \mathbb{R}^{N}$
, Equivalently

$$
\delta_{s}=\max _{S, \operatorname{card}(S) \leq s}\left\|A_{s}^{*} A_{s}-I d\right\|
$$

RIC

, The RIC δ_{s} are increasing

- If A has normalized columns, a coherence μ and a Babel- 1 function μ_{1}, then

$$
\delta_{1}=0, \delta_{2}=\mu, \delta_{s} \leq \mu_{1}(s-1)
$$

RESTRICTED ISOMETRY PROPERTY (RIP) AND BP

Let A such that $\delta_{2 s} \leq \frac{1}{3}$
D Then every $s-$ sparse vector x is the unique solution of

$$
\min \|z\|_{1} \quad \text { s.t. } \quad A x=A z
$$

RESTRICTED ISOMETRY PROPERTY (RIP) AND IHT

Let A such that $\delta_{3 s} \leq \frac{1}{2}$
D Then, for every $s-$ sparse vector x such that $y=A x$, the IHT initialized by a $s-$ sparse vector converges to x
, IHT:

$$
x^{(t+1)}=\mathscr{H}_{s}\left(x^{(t)}+A^{*}\left(y-A x^{(t)}\right)\right)
$$

Where $\mathscr{H}_{s}(x)$ keeps the s largest magnitude value of x

COHERENCE OR RIP ?

- Coherence: easy to check, but very restrictive (few matrix satisfies coherence properties)
- RIP: difficult to check. Satisfied with some random matrices
- Application: compressive sensing

