Category: Publication

Linking early diagenesis and sedimentary facies to sequence stratigraphy on a prograding oolitic wedge: The Bathonian of western France (Aquitaine Basin)

To improve the understanding of the distribution of reservoir properties along carbonate platform margins, the connection between facies, sequence stratigraphy, and early diagenesis of discontinuities along the Bathonian prograding oolitic wedge of the northeastern Aquitaine platform was investigated. Eight facies are distributed along a 50 km-outcropping transect in (1) toe-of-slope, (2) infralittoral prograding oolitic wedge, (3) platform margin (shoal), (4) open marine platform interior, (5) foreshore, and (6) terrestrial settings. The transition from shallow platform to toe-of-slope facies is marked in the field by clinoforms hundred of meters long. Carbonate production was confined to the shallow platform but carbonates were exported basinward toward the breakpoint where they cascaded down a 20–25° slope. Ooid to intraclast grainstones to rudstones pass into alternating marl-limestone deposits at an estimated paleodepth of 40–75 m. Three sea-level falls of about 10 m caused the formation of discontinuities corresponding to sequence boundaries. Along these discontinuities, erosional marine hardgrounds formed in a high-hydrodynamic environment at a water depth of less than 10 m, displaying isopachous fibrous cements and meniscus-type cements. The cements pass landward into meniscus and microstalactitic forms along the same discontinuities, which are characteristic of subaerial exposure. During the deposition of transgressive systems tracts, carbonate accumulation remained located mostly on the shallow platform. Energy level increased and carbonates were exported during the deposition of highstand systems tracts forming the infralittoral prograding oolitic wedge. During the deposition of lowstand systems tracts, carbonate production fell to near zero and intraclast strata, derived from the erosion of hardgrounds on the shallow platform, prograded basinward. Early diagenetic cements are related exclusively to discontinuities that are not found within the prograding wedge because of the continuous high sedimentation rate under lower hydrodynamic conditions. This absence of early cementation within the infralittoral prograding oolitic wedge was conducive to porosity conservation, making such features good targets for carbonate reservoir exploration. This study proposes a novel sequence stratigraphy model for oolitic platform wedges, including facies and early diagenesis features.

Link

Andrieu S., Brigaud B., Barbarand J., Lasseur E., 2017. Linking early diagenesis and sedimentary facies to sequence stratigraphy on a prograding oolitic wedge : the Bathonian of western France (Aquitaine Basin). Marine and Petroleum Geology. 81, 169-195

Permanent link to this article: http://hebergement.u-psud.fr/reliefetbassin/index.php/archive/linking-early-diagenesis-and-sedimentary-facies-to-sequence-stratigraphy-on-a-prograding-oolitic-wedge-the-bathonian-of-western-france-aquitaine-basin/

Sedimentological control on the diagenesis and reservoir quality of tidal sandstones of the Upper Cape Hay Formation (Permian, Bonaparte Basin, Australia)

The deep siliciclastic reservoir (>3500 m) of the Upper Cape Hay Formation of the Bonaparte Basin (Petrel gas field, Petrel sub-basin, Permian) exhibits wide heterogeneity in porosity (2–26%) and permeability (0.001–2500 mD). To investigate this variability, 42 samples were taken from five wells drilled through this formation. Six facies were identified from core descriptions and microscopic study of the sandstones. These facies are typical of a tide-dominated estuary, and include (1) mud flat, (2) sand flat, (3) top of tidal sand bar, (4) middle of tidal sand bar, (5) bottom of tidal sand bar, and (6) outer estuary facies. The paragenetic sequence comprises the emplacement of early aggregates of ferrous clay mineral precursors, mechanical compaction, recrystallization of those ferrous clay mineral precursors to Fe-rich chlorite and crystallization of Fe-rich chlorite forming coatings around detrital grains, chemical compaction, development of quartz overgrowth, feldspar alteration, crystallization of dickite and illite-rich illite/smectite (I-S) mixed layers, and ferrous calcite cementation. The middle and top of the tidal bars generally exhibit the highest porosity (Φ > 10%) and permeability values (k > 1 mD). Feldspar alteration released silica and aluminium into the reservoir promoting the development of dickite and illite-rich I/S mixed layers, which tended to destroy porosity and permeability, as calcite cements and quartz overgrowths. Diagenetic chlorite coatings around detrital grains are restricted to the sand bar facies deposited at the end of the last third-order transgressive systems tract of the Cape Hay Formation. The formation and conservation of ferrous clay precursors seems to be possible in an estuarine environment where seawater and fresh water are mixed and tidal sand bars are formed. These ferrous clay precursors recrystallized to Fe-rich chlorite coating after mechanical compaction. These coatings inhibited quartz cementation and prove to be the key parameter behind good reservoir qualities.

Link

Saïag, J., Brigaud, B., Portier, E., Desaubliaux, G., Bucherie, A., Miska, S., Pagel, M., 2016. Sedimentological control on the diagenesis and reservoir quality of tidal sandstones of the Upper Cape Hay Formation (Permian, Bonaparte Basin, Australia). Marine and Petroleum Geology. 77, 597-624

Permanent link to this article: http://hebergement.u-psud.fr/reliefetbassin/index.php/archive/sedimentological-control-on-the-diagenesis-and-reservoir-quality-of-tidal-sandstones-of-the-upper-cape-hay-formation-permian-bonaparte-basin-australia/

Genesis of Carbonate- and siliciclastic-hosted stratabound fluorite deposits in Burgundy

Stratabound fluorite deposits occur at the unconformity between the Variscan crystalline basement and the Mesozoic sandstone, conglomerate, limestone, and dolomite rocks of the Morvan Massif in central Burgundy. This study describes their petrographic characteristics in an attempt to determine the nature and temperature of mineralizing fluids in order to better understand the fluid migrations that led to massive stratabound fluorite deposition. The general paragenesis encompasses two major mineralizing events causing a succession of fluorite, barite, and quartz in all deposits. The two mineralizing events were preceded by two corrosion (dissolution or karstification) events affecting both the dolomite host rock at Pierre-Perthuis and Marigny-sur-Yonne and the limestone host rock at Courcelles-Frémoy with the creation of 1–10 m cavities and microscopic vugs. At Antully, the blocky calcite initially cementing the sandstone was partially dissolved. Microthermometric data on aqueous two-phase inclusions attest to CaCl2-rich fluids giving rise to fluorite deposition in the Pierre-Perthuis, Courcelles-Frémoy, and Antully deposits. Homogenization temperatures range from 80 to 100 °C at Pierre-Perthuis and Courcelles-Frémoy, with sporadically higher temperatures. The range of CaCl2 contents is 6.5–15 wt.% at Pierre-Perthuis, 1.7–9.4 wt.% at Courcelles-Frémoy, and 1.6–16.3 wt.% at Antully. The thermal history of the northwestern Morvan, compiled from organic matter, clay minerals and apatite fission track data indicates that the temperatures in fluorite and barite are higher than the maximum temperature recorded in sediments. This implies deep ascendant hydrothermal brine circulation during the Early Cretaceous. The impermeable cap rock retained the ascendant hydrothermal brine and allowed the deposition of massive fluorite stratabound mineralizations.

Online

Permanent link to this article: http://hebergement.u-psud.fr/reliefetbassin/index.php/archive/genesis-of-carbonate-and-siliciclastic-hosted-stratabound-fluorite-deposits-in-burgundy/

Constraints on the DUPAL anomaly from helium isotope systematics in the Southwest Indian mid-ocean ridge basalts

Helium isotopes were measured on 53 glass samples from the South West Indian Ridge from 32 to 68° E. The 4He/3He ratio is heterogeneous along the SWIR, with values down to 74,000 and up to 114,000 (R/Ra between 9.8 and 6.3), more variable than for helium isotope systematics measured at other mid-oceanic ridge systems, far from hot spots. Helium–Pb, Hf, Nd and Sr systematics on the SWIR basalts suggest that the large-scale geodynamics of the Indian mantle is mainly controlled by mixing between asthenospheric material and the lower continental crust. The latter is currently interpreted as having been introduced into the mantle by delamination during the Gondwana breakup ~ 180 Ma ago. Superimposed to this global-scale mixing, the asthenospheric mantle presents variable helium and Hf isotopic ratios and relatively constant Pb, Nd and Sr isotopic values. These results are interpreted in terms of a heterogeneous asthenospheric material source and the helium isotopic ratio represents a mixture between harzburgitic “pyroxenite-free” mantle and recycled materials such as oceanic lithosphere/crust. Using a model of helium diffusion similar to the one developed for recycled oceanic crust by Hart et al. (2008), we are able to constrain the size of the lower crust fragments present in the mantle. Results of this calculation indicate that the He and Pb isotopic compositions observed in SWIR basalts can be explained by mixing between depleted mantle and lower crust fragments up to ~ 5–10 km. This result shows that significant lower crust and, probably also subcontinental lithosphere material, can be removed during delamination during continental breakup.

Online

Permanent link to this article: http://hebergement.u-psud.fr/reliefetbassin/index.php/archive/constraints-on-the-dupal-anomaly-from-helium-isotope-systematics-in-the-southwest-indian-mid-ocean-ridge-basalts/

Paper at Gondwana Research: Lithospheric structure of the North China Craton

The paper “Lithospheric structure of the North China Craton: Integrated gravity, geoid and topography data” by Ya XU, Hermann Zeyen etc. has been accepted for publication in Gondwana Research. The joint inversion of gravity, geoid and topography data was used to study the crust and lithosphere structure of North China Craton. It compared the different lithosphere structures with other geophysical studies and discussed the lithosphere thinning in North China Craton with integrated geophysical analysis.

Abstract:

The lithospheric structure of ancient cratons provides important constraints on models relating to tectonic evolution and mantle dynamics. Here we present the 3D lithospheric structure of the North China Craton (NCC) from a joint inversion of gravity, geoid and topography data. The NCC records a prolonged history of Archean and Paleoproterozoic accretion of crustal blocks through subduction and collision building the cratonic architecture, which was subsequently differentially destroyed during Mesozoic through extensive magmatism. The thermal structure obtained in our study is considered to define the lithosphere-asthenosphere boundary (LAB) of the NCC, and reflects the density variations within the mantle lithosphere. Employing the Moho depths from deep seismic sounding profiles for the inversion, and based on repeated computations using different parameters, we estimate the Moho depth, LAB depth and average crustal density of the craton. The Moho depth varies from 28 to 50 km and the LAB depth varies from 105 to 205 km. The LAB and Moho show concordant thinning from West to East of the NCC. The average crustal density is 2870 kg·m 3 in the western part of the NCC, higher than that in the eastern part (2750 kg·m 3). The results of joint inversion in our study yielded LAB depth and lithospheric thinning features similar to those estimated from thermal and seismic studies, although our results show different depth and variations in the thickness. The lithosphere gently thins from 145 to 105 km in the eastern NCC, where as the thinning is much less pronounced in the western NCC with average depth of about 175 km. The joint inversion results in this study provide another perspective on the lithospheric structure from the density properties and corresponding geophysical responses in an ancient craton.

Permanent link to this article: http://hebergement.u-psud.fr/reliefetbassin/index.php/archive/paper-at-gondwana-research/

Stratabound Fluorite deposit origin (Burgundy, France)

World-class stratabound fluorite deposits are spatially associated with the basement/sediment unconformity of the intracratonic Paris Basin and the Morvan Massif in Burgundy (France). The reserves are estimated to be about 5.5 Mt of fluorite within six fluorite deposits. In this study, we aim to determine the age of the major fluorite mineralization event of the Pierre-Perthuis deposit (1.4 Mt fluorite) by a combined study of the paragenetic mineral sequence and Sm-Nd dating on fluorite crystals. Fluorite occurs as isolated cubes or filling geodes in a Triassic, silicified, dolomitic formation. Three fluorite stages associated with sphalerite, pyrite, galena, barite, and quartz have been distinguished using optical, cathodoluminescence, and scanning electron microscopes. Seven crystals of the geodic fluorite stage were analyzed for their rare earth element (REE) contents and their 147Sm/144Nd and 143Nd/144Nd isotopic compositions. The normalized REE distribution displays homogeneous bell-shaped patterns for all the geodic fluorite samples with a Mid-REE enrichment over the Light-REE and Heavy-REE. The 147Sm/144Nd varies from 0.3108 to 0.5504 and the 143Nd/144Nd from 0.512313 to 0.512518. A six-point Sm-Nd isochron defines an age of 130 ± 15 Ma (initial 143Nd/144Nd  = 0.512054, MSWD = 0.21). This Sm-Nd isochron provides the first age for the stratabound fluorite sediment-hosted deposit, related to an unconformity in the Paris Basin, and highlights a major Early Cretaceous fluid circulation event mainly above the basement/sediment unconformity during a flexural deformation of the Paris Basin, which relates to the rifting of the Bay of Biscay and the formation of the Ligurian Sea in the Western Europe domain.

Permanent link to this article: http://hebergement.u-psud.fr/reliefetbassin/index.php/archive/stratabound-fluorite-deposit-origin-burgundy-france/

New article to Marine and Petroleum Geology

The article “Characterization and origin of permeability-porosity heterogeneity in shallow-marine carbonates : from core scale to 3D reservoir dimension (Middle Jurassic, Paris Basin, France)” by Benjamin Brigaud Benoit Vincent, Christophe Durlet, Jean-François Deconinck Emmanuel Jobard, Niel Pickard, Beatrice and Philippe Yven Landrein is ready for publication to Marine and Petroleum Geology.

Permanent link to this article: http://hebergement.u-psud.fr/reliefetbassin/index.php/archive/new-article-to-marine-and-petroleum-geology/