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Gapless quantum spin liquid ground state in the spin-1 antiferromagnet 6HB-Ba3NiSb2O9
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We present an in-depth study of the magnetic properties of the spin-1 antiferromagnet 6HB-Ba3NiSb2O9. μSR
measurements demonstrate that this material shows no static magnetism down to temperatures as low as 20 mK,
making it a likely candidate for a quantum spin liquid state. 121Sb NMR shift measurements show that the local,
intrinsic susceptibility levels off at temperatures below ∼60 K. The NMR spin-lattice relaxation rate 1/T1 is
essentially constant in temperature and the muon relaxation rate exhibits a low-temperature relaxation plateau,
all indications of gapless spin excitations. Our local probe measurements are discussed in the context of several
theories proposed for this material.
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I. INTRODUCTION

In the presence of strong magnetic frustration and quantum
fluctuations, the usual long-range Néel order of an antiferro-
magnetic spin system can give way to a much more exotic
ground state known as a quantum spin liquid (QSL) that
exhibits long-range spin entanglement and supports fractional
spin excitations (for example spinons) [1]. Many decades of
theoretical interest have led to the relatively recent discovery of
several likely QSL states in materials with spin-1/2 moments
on kagome lattices [2,3] and triangular lattices near to a Mott
transition [4,5]. As we begin to understand these materials,
a logical next step is to consider a middle ground between
quantum and classical limits by studying S = 1 systems on
frustrated lattices. Just as in the case of one-dimensional spin
chains [6], we may expect significant, qualitative differences
between the S = 1/2 and S = 1 cases.

A particularly appealing S = 1 frustrated system is the
triangular antiferromagnet 6HB-Ba3NiSb2O9 [7]. Although
the ambient pressure 6HA phase of Ba3NiSb2O9 orders [8,9],
the 6HB phase, synthesized at pressures �2 GPa [10], has
shown no indications of magnetic order in thermodynamic
quantities, but instead a T -linear specific heat C and a
constant magnetic susceptibility χ after subtraction of a small
Curie tail [7] (see Fig. 1). The idea of a Fermi surface
of spinons has been invoked [7] and a large Wilson ratio
W = 4π2k2

Bχ0/3g2μ2
Bγ � 5.6 has been obtained, suggestive

of strong spinon correlations. These findings have triggered
a great deal of theoretical interest in triangular spin-1 models
[11–16]. In this paper we investigate the magnetic properties of
6HB-Ba3NiSb2O9 and, through an in-depth local-probe study,
show that it does appear to exhibit a gapless QSL ground state.

Studies of the related material Ba3CuSb2O9 have high-
lighted the likelihood and importance of structural disorder in
such a structure. Ba3CuSb2O9 is thought to have a triangular
lattice of Sb5+-Cu2+ “dumbbells,” the orientations of which
are quenched almost randomly during crystal growth [17].
The resulting magnetic Cu lattices have been argued to
either exhibit correlated disorder with a local honeycomb

structure [17] or short-range stripe order [18]. Ba3CuSb2O9

shows no spin [19] or orbital [20] freezing and may have
an exotic quantum spin-orbital liquid (QSOL) ground state
[17,19,21,22] which might be a consequence of disorder
[18,23,24].

It is therefore important to investigate whether the
same kind of disorder exists in structurally similar
6HB-Ba3NiSb2O9 and a thorough structural study of
the sample studied here has recently been undertaken [25].
Our magnetic susceptibility results are consistent with the
results of Cheng et al. [7] yielding a Weiss constant of 75.6(6)
K, a moment size of μeff = 3.201(9) μB , and a similar Curie
tail, thus our structural characterization should be considered
to be typical of 6HB-Ba3NiSb2O9 samples. Using x-ray,
neutron, and electron diffraction, it has been shown [25] that
the structure can be indexed as P 63/mmc with 50%–50% site
mixing between Sb5+ and Ni2+ ions. However, at the local
level, this material’s structure is very different from that of
Ba3CuSb2O9 and electron diffraction measurements show
that it maintains a triangular lattice of Ni ions (i.e., co-aligned
Ni-Sb dumbbells) over domains roughly 10 nm in size. At the
local level the structure is trigonal instead of hexagonal and the
most likely explanation is that the orientation of the dumbbells
alternates between adjacent planes, as shown in the inset of
Fig. 1. As the magnetic exchange interactions pass primarily
through Ni-O-O-Ni bonds, this structure consists of magnetic
bilayers that are likely to be described by a J1-J2 honeycomb
model. For the time being the J1/J2 ratio is not known.

II. MUON SPIN ROTATION

As a first step in understanding the magnetism of 6HB-
Ba3NiSb2O9, we have applied muon spin rotation (μSR),
which is capable of revealing tiny fractions of a μB of
static magnetism. The muon polarization was found to be
well fit with a simple exponential decay P (t) = exp(−λt),
for all temperatures and longitudinal magnetic fields. Shown
in Fig. 2(a) are representative polarization curves obtained
in zero field (ZF). The relaxation rate λ(T ) displays a clear
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FIG. 1. The magnetic susceptibility as measured with a commer-
cial SQUID magnetometer χmacro and as obtained from the NMR
shift χint = (K − K0)/A, with A = −8.6 kOe/μB . Also shown is the
analysis of Cheng et al. [7] involving the subtraction of a Curie tail
(scaled to match our value of μeff ). Inset: The likely configuration
of Ni2+ ions in the 6HB-Ba3NiSb2O9 structure [25]. Only a select
portion of the unit cell is shown to focus on the Ni ions. Given the
configuration of Ni-O-O-Ni bonds, these bilayers are likely to exhibit
a J1-J2 model on a honeycomb lattice.

plateau below ∼1 K, reaching at most ∼0.3 μs−1. If this ZF
relaxation were the result of static magnetism, it would have
to be extremely weak, generating a random field distribution
of width � = λ/γμ � 3.5 G. Assuming dipolar coupling to
muons stopped near the oxygen atoms furthest from the
Ni sites, static moments would have to be smaller than
∼0.016 μB , a tiny fraction of the full 2.3 μB/Ni2+. Moreover,
the decoupling of this relaxation as a function of longitudinal
magnetic field [Fig. 2(c)] provides definitive proof that the
relaxation does not come from static moments. Such small
internal fields would be quickly dwarfed by the longitudinal
fields (LF) applied here, completely decoupling the muon
relaxation, whereas measurable relaxation is seen in LF as
high as 1 T.

The relaxation plateau of λ(T ) shown in Fig. 2(b) is by now
a routine observation in a wide variety of frustrated magnetic
compounds, and specifically potential QSL systems. The mag-
nitude of the plateaus, however, can vary appreciably between
systems, from λ � 0.05 μs−1 in Herbertsmithite [2,26] and
ZnCu3(OH)6SO4 [27] to λ � 0.45 μs−1 in Kapellasite [28] and
[NH4]2[C7H14N][V7O6F18] [29] to name several examples.

The decoupling curve [Fig. 2(d)] does not at all resemble
the standard relation from Redfield theory [30], that is T

μ

1 =
1/λ = a + bH 2, where a and b depend on an electronic
fluctuation rate ν and the fluctuating field � [30]. Instead we
find that an unconventional power law T

μ

1 = a + bHα with
α = 0.52 provides a good fit to the data. This is all the more
surprising given that the relaxation is found to be exponential

FIG. 2. (a) Representative ZF muon polarization curves P (t) and
exponential fits (solid lines). (b) Relaxation time λ(T ) showing a
relaxation plateau below ∼1 K. The solid line is a guide to the eye. (c)
P (t) curves for various values of longitudinal field with exponential
fits. (d) Relaxation time T

μ

1 = 1/λ as a function of longitudinal
magnetic field. The solid line is a fit of the form T

μ

1 = a + bHα

with α = 0.52.

over the entire temperature range. Again we find a similarity
to the QSL Herbertsmithite [26], where α = 0.66, although
the relaxation is overall much faster in Ba3NiSb2O9.

III. NUCLEAR MAGNETIC RESONANCE

To offer a more local perspective on the dynamics of
this material, we have employed 121Sb NMR measurements.
Spectra were obtained with a standard π/2-τ -π sequence
with very short T2 times requiring τ as low as 6 μs. The
121Sb nuclei are strongly coupled to the magnetic Ni2+ spins
with a hyperfine coupling of A = −8.6 kOe/μB . We cannot
resolve the powder-broadened quadrupolar satellites making a
proper determination of the quadrupolar coupling impossible.
This is indicative of structural disorder. While there are two
inequivalent Sb sites in the crystal structure, only one is seen
in the NMR spectra, as is the case in Ba3CuSb2O9 [19].
We speculate that we are able to observe the Sb nuclei that
are within the Sb-Ni dumbbells and that the other Sb site,
which is coupled to multiple Ni sites, is wiped out by spin
fluctuations. A smaller and narrower peak with roughly zero
shift is also observed. This impurity peak likely comes from
a nonmagnetic parasitic phase and also exhibits a quadrupolar
structure, as shown in Fig. 3(a). The impurity phase is easily
distinguished from the bulk in T2 measurements, which show
two-component exponential relaxation. At low T , the T2 of
the bulk phase becomes extremely rapid (�10 μs at 10 K),
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FIG. 3. (a) 121Sb NMR spectra at selected temperatures showing
the main line and impurity peak. One spectrum (gray) with τ = 80 μs
reveals only the slowly relaxing impurity contribution. The strong
anisotropy predicted by Serbyn et al. [12] is inconsistent with the
data, as shown by the powder simulation over the 40 K data (thin blue
curve). (b) The majority signal shows an appreciable shift K(T ).

whereas T2 of the impurity phase becomes longer, as shown
in Fig. 4. Although it represents only about 2% of the sample,
the impurity phase contributes heavily to the spectra because
of its longer T2.

The temperature dependence of the NMR shift K(T )
yields the intrinsic susceptibility shown in Fig. 1. It increases
with decreasing temperature until reaching a plateau near 60
K. Below 30 K or so, it becomes impossible to resolve the
shift precisely due to the influence of the impurity site, but the
spectral weight does remain appreciably shifted down to the
lowest temperatures studied. This confirms the hypothesis of
Cheng et al. [7] that an orphan spin contribution (of the order

10-1

100

101

102

101 102

FIG. 4. 121Sb NMR relaxation rates: 1/T1 of the bulk (�) and
of the impurity site (�), and 1/T2 of the bulk (•) and impurity
site (◦). The black diamonds (♦) are 1/T1 obtained with a contrast
measurement. Dashed lines are guides to the eye.

of 1.7%) must be subtracted from χmacro to obtain the true,
intrinsic susceptibility χint which we prove to remain finite
and largely constant at low temperature. A significantly larger
Curie tail (representing roughly 15% of Cu spins) is found in
Ba3CuSb2O9 [19] which has a natural explanation in its very
short-range ordered structure [18].

In the spin-lattice relaxation (T1) recovery curves, two
components are also observed. With two-component fits
(see the Appendix), we extract the values of 1/T1 for the
majority phase and nonmagnetic impurity (squares in Fig.
4). To more rigorously confirm that this simple analysis
accurately determines the T1 of the majority phase, we have
used a contrast method (described in detail in the Appendix)
to remove most of the impurity signal. The resulting fits give
the black diamonds in Fig. 4 and confirm our two-component
analysis. The resulting value of 1/T1 is essentially independent
of temperature, varying at most as T 0.1. A constant spin-lattice
relaxation rate is relatively rare, though in several spin chain
systems it varies very little or has only a slight logarithmic
increase at low temperatures [31,32]. Similar physics could be
at play here. While clearly these results extend well below �W ,
we could consider the possibility that frustration lowers the
onset of spin correlations, placing our NMR measurements
in a paramagnetic regime, which would also lead to a
constant T1. Following Ref. [33], with parameters relevant to
6HB-Ba3NiSb2O9, we obtain 1/T1 � 7.45 ms−1 in the param-
agnetic limit, which is not so distant from the measured values
of 40–50 ms−1.

The NMR experiments become difficult as the temperature
is lowered due to a shrinking T2, thus our NMR results do
not overlap appreciably with the μSR plateau. However, the
NMR data at 5 K are somewhat inconsistent with the onset of
the relaxation plateau. μSR has the advantage of extending to
much lower temperatures without loss of signal, but since it is
a less local probe the plateau may arise from coupling to dilute
impurities (orphan spins), to which NMR is less sensitive. This
has been proposed as a possible explanation for the relaxation
plateau in Herbertsmithite [26], where the NMR 1/T1 is an
increasing function of temperature [34]. A similar contrast
between μSR and NMR was more recently seen in the kagome
system ZnCu3(OH)6SO4 [27] and in the triangular organic
QSL κ-(BEDT-TTF)2Cu2(CN)3 [35,36].

The spin-lattice relaxation rate can be determined with
1/T1 = (γ 2kBT /ω0)

∑
q |A(q)|2χ ′′

⊥(q,ω0), so to directly com-
pare NMR and μSR we must look above the relaxation plateau,
at the same Larmor frequency (the 121Sb nucleus at 12 T has
roughly the same Larmor frequency as muons at ∼0.9 T), and
scale the relaxation rates by γ 2A2, assuming that there is no
significant q dependence. As before, we take a muon stopping
site roughly 4 Å away from the Ni ions and assume that the
decoupling curve illustrated in Fig. 2(d) holds everywhere.
Under these assumptions, we expect an NMR 1/T1 to be
roughly 58 ms−1, in rather good agreement with the measured
relaxation rate.

IV. DISCUSSION

Having confirmed that 6HB-Ba3NiSb2O9 shows no static
magnetism down to 20 mK and appears to have gapless
spin excitations, we now consider possible reasons for such
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exotic physics. These results are indeed puzzling given that a
spin-1/2 triangular-lattice antiferromagnet is expected to order
in the 120◦ structure. Similarly, the standard honeycomb lattice
is bipartite and would support a simple antiferromagnetic
order. Evidently additional frustrating parameters must be
considered.

We first consider a scenario wherein the exchange interac-
tion is modulated by disorder, giving rise to a random exchange
model on the triangular lattice. In recent theoretical work (see
Refs. [37,38]), exchange randomness, above a critical value
of �JC/J = 0.5 ± 0.15, in a S = 1/2 triangular lattice model
was shown to induce a random singlet QSL-like state with
gapless spin excitations and a linear specific heat. However, a
significant level of disorder in the exchange interaction would
lead to a proportional disorder in the local susceptibility which
is one of several possible sources of NMR line broadening.
The measured linewidths place a conservative upper limit
on the exchange disorder of �J/J � 0.25. It is also worth
noting that �χ/χ is much smaller here than in Ba3CuSb2O9

(roughly 7 times as large at 80 K for example) [19], supporting
the conclusion [25] that 6HB-Ba3NiSb2O9 is much less
disordered at the local level. We therefore conclude that struc-
tural disorder cannot explain the observed gapless QSL-like
physics.

Supposing that the in-plane exchange, J2, is the dominant
interaction strength, this system may be adequately described
by triangular lattice models. Several different varieties of QSL
have been proposed for S = 1 triangular antiferromagnets
based on models that incorporate biquadratic exchange, next-
nearest-neighbor exchange, interlayer exchange, and/or single
ion anisotropy [11–14,16]. One of these theories has provided
experimental predictions that can be tested with the present
experiments [12,13]. Specifically, Serbyn et al. [12] have
considered biquadratic exchange and single-ion anisotropy
and have proposed a chiral QSL that reproduces the linear
C(T ), constant χ (T ), and Wilson ratio RW . They predict an
exponentially vanishing 1/T1 but this is clearly at odds with our
observation of a constant 1/T1 in NMR and relaxation plateau
in μSR (although the NMR results do not rule out a small
gap �2 K or so). Second, they predict a strong anisotropy
χxx = χ0 and χzz = 0 at low T . The macroscopic (SQUID)
susceptibility measurement of a powder is simply a weighted
sum of these terms giving χpowder = 2χxx/3 + χzz/3, and thus
is not in conflict with this prediction. However, NMR provides
a histogram of susceptibilities and in the case of strong
anisotropy would give an intense peak at B(1 − Aχxx) =
12.19 T along with a hump at B(1 − Aχzz) = 11.96 T. This
peak-hump structure is not consistent with our data, as shown
by the solid line in Fig. 3(a).

Chen et al. [15], meanwhile, do away with QSL physics
and instead consider the possibility that this system is near
to a quantum critical point (QCP) driven by anisotropy D.
Depending on the precise value of D either a gap and strong
anisotropy or else a small ordered moment can be expected.
Again, both of these scenarios are ruled out, provided the gap
is not especially small. Several other QSL theories have been
proposed that may still apply to this system, but that have
not made predictions that can be tested with our experiments
[11,14,16].

If J2 and J1 are comparable in strength, a frustrated
honeycomb model may be more relevant to this system. Two
sources of frustration for S = 1 spins on the honeycomb
lattice have been considered from a theoretical point of view:
competition between bilinear and biquadratic interactions [39]
or a J1-J2 Heisenberg model [40]. In both cases, a range of
parameters leads to a plaquette valence bond crystal (VBC)
ground state. Such a state is also found in the frustrated
S = 1/2 case [41–43]. A VBC ought to have gapped spin
excitations and thus does not appear to be consistent with our
results. Thus, it may be that the present system exists at a
deconfined QCP between plaquette VBC and antiferromag-
netic order which is seen in at least two of the aforementioned
models [39,42].

In conclusion, our μSR and NMR results show that 6HB-
Ba3NiSb2O9 is a good gapless QSL candidate with no static
magnetism, constant χ , constant T1 in NMR, and a μSR
relaxation plateau at low temperatures. Despite the inherent
disorder in this system, our NMR linewidths indicate that
disorder alone is not sufficient to induce a QSL ground state as
considered in Ref. [37]. We can likely rule out two particular
theoretical models [12,15], leaving several theories of QSL
[11,14] or of deconfined quantum criticality [39,40,42] that
may be applicable to this system. Theoretical predictions for
the NMR line shape and relaxation rates in these models are
therefore an important future research direction.
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APPENDIX A: SEPARATION OF INTRINSIC
AND IMPURITY SIGNALS

The NMR signal was obtained with a standard Hahn spin-
echo sequence π/2-τ -π . Spectra were obtained by integrating
the spin echo intensity at constant frequency while the
magnetic field was varied. The spin-spin relaxation time T2

was obtained by varying τ in the aforementioned sequence.
Varying τ has also allowed us to highlight slowly or quickly
relaxing components of the signal. In the limit τ → 0 we
should observe the correct relative intensities of the different
components in the sample. As τ becomes larger, the weight of
slowly relaxing components becomes more significant.

The sample of 6HB-Ba3NiSb2O9 that we have studied
shows two primary components in the NMR spectra. The
majority phase is found to be very fast relaxing (T2 is as short
as 10 μs depending on the temperature). A minority phase
is also observed that has very little line shift and is much
more slowly relaxing. This phase is therefore very likely a
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FIG. 5. Spin-spin relaxation curves M(τ ) at several temperatures,
showing clear two-component exponential relaxation. The solid lines
are double exponential fits. The dashed lines are extrapolations of the
individual exponential components which appear as straight lines on
a semilog plot.

nonmagnetic impurity phase. In Fig. 3(a) spectra are shown
at various temperatures taken with τ < 10 μs. One spectrum
acquired with τ = 80 μs at 10 K is also shown (gray curve). In
this spectrum, the majority phase is all but eliminated and what
remains is the nonmagnetic impurity signal. We see that this
phase also has a quadrupolar splitting that leads to a narrow
peak superimposed on a broad powder-broadened quadrupolar
contribution. We do resolve two of the quadrupolar satellite
peaks of this component. For relaxation measurements, we
worked at a part of the spectrum away from the narrow
central peak of the impurity component but the fact that this
contribution also has a broad quadrupolar component means
that we cannot completely avoid it. Special care was therefore
taken to isolate the main-phase and nonmagnetic impurity
components in relaxation measurements.

Shown in Fig. 5 are M(τ ) spin-spin relaxation curves at
several different temperatures and at fields away from the
impurity peak. Clear two-component exponential relaxation
(straight lines in the semilog plot) is seen, consistent with our
interpretation of the spectra. While the intrinsic component
dominates in a time window from 0 to ∼30 μs, that of the
impurity phase is isolated at long times. These two-component
fits have been used to generate the 1/T2(T ) results shown in
Fig. 4. Whereas the main phase T2 gets shorter as the temper-
ature is reduced, the nonmagnetic impurity phase gets much
longer. This enabled us to perform “contrast” experiments
where at long times we obtain only the nonmagnetic impurity
contribution, while at short times the intrinsic contribution
represents the dominant component of the spectrum. Given
the broadening of the latter, especially at low temperature, the
very small impurity phase appears to have a large contribution
to the spectra at the unshifted position, since it is impossible
to work at τ = 0. Extrapolating to τ = 0 allows us to estimate
that the nonmagnetic impurity phase represents roughly 2% of
the Sb sites in the sample.
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FIG. 6. Spin-lattice relaxation recovery curves obtained at 10 K
with a standard method (red) and with a contrast method that almost
completely eliminates slowly relaxing components (blue). The fits
are described in the text.

The spin-lattice relaxation rate was measured using the
saturation-recovery method, that is applying the sequence
π/2-t-π/2-τ -π and determining M(t). However, due to very
fast relaxation, we were unable to reach the point of full
saturation. To carefully define our π/2 saturation pulse, we
performed tests on a different Sb-containing compound in the
same probe and coil. Once again, we see evidence of two
components in the recovery curves, as can be seen in Fig. 6.
Two methods to extract the intrinsic T1 have been used which
give consistent results.

The first method relies on the aforementioned contrast
technique. Since the nonmagnetic impurity phase is slowly
relaxing, changing τ from 10 to 50 μs barely alters its
amplitude. However, at τ = 50 μs, the main phase has been
reduced by an order of magnitude or more (see Fig. 5). Thus
obtaining recovery curves for these two different values of τ

and subtracting them allows us to almost completely eliminate
the nonmagnetic impurity phase while hardly altering the
majority phase. These two measurements were performed si-
multaneously, under identical experimental conditions, before
being subtracted. The result is shown as the blue curve in
Fig. 6. Evidently the slowly relaxing component is eliminated
and only a fast exponential remains. Performing exponential
fits to recovery curves obtained in this way, we generate the
black diamonds in Fig. 4.

A simpler analysis scheme is to use a two-component
fit to analyze the recovery curves. Because of disorder or
quadrupolar channels to relaxation, the nonmagnetic impurity
phase was best fit with a stretched exponential (with β � 0.5).
Thus the data were fit with the following equation:

M(t) = M∞
[
1 − ae−t/T1 − aimpe

−(t/T
imp

1 )β
]
.

This two-component fit method, shown as the red curve in
Fig. 6, was used to generate the 1/T1(T ) data points shown
as the open and closed blue squares in Fig. 4. These data
points match well with the results of the contrast method, thus
validating our interpretation of the data.
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