Gestion des incertitudes paramétriques en simulation de systèmes chimiques complexes.

Application aux plasmas photochimiques N2/CH4

P. Pernot¹, Z. Peng¹, S. Plessis¹ and N. Carrasco²

¹LCP, UMR8000 CNRS/Univ. Paris-Sud, Orsay

²LATMOS, UMR8190 CNRS/UVSQ, UPMC, Guyancourt

J. Simul 2013/11/14

Incertitudes en modélisation

• Gestion des incertitudes paramétriques

MCUP en modélisation photochimique
 Spécification des incertitudes

3 Application aux plasmas N2/CH4

P. Pernot et al. (LCP@Orsay)

Formulation du modèle : approximations, incertitudes structurales (incomplétude)

- Implémentation numérique du modèle : précision des algorithmes, seuils de convergence, modèles stochastiques
- Incertitudes paramétriques : précision des paramètres définissant le modèle
 - Les incertitudes paramétriques conditionnent fortement ::
 - la validation d'un modèle (1)
 - la gualité de l'implémentation numérique (2)

Formulation du modèle :

approximations, incertitudes structurales (incomplétude)

- Implémentation numérique du modèle : précision des algorithmes, seuils de convergence, modèles stochastiques
- Incertitudes paramétriques : précision des paramètres définissant le modèle
 - Les incertitudes paramétriques conditionnent fortement :
 - la validation d'un modèle (1)
 - la qualité de l'implémentation numérique (2)

Formulation du modèle :

approximations, incertitudes structurales (incomplétude)

Implémentation numérique du modèle : précision des algorithmes, seuils de convergence, modèles stochastiques

Incertitudes paramétriques :

précision des paramètres définissant le modèle

- Les incertitudes paramétriques conditionnent fortement :
 - la validation d'un modèle (1)
 - la qualité de l'implémentation numérique (2)

Formulation du modèle :

approximations, incertitudes structurales (incomplétude)

Implémentation numérique du modèle : précision des algorithmes, seuils de convergence, modèles stochastiques

Incertitudes paramétriques :

précision des paramètres définissant le modèle

- Les incertitudes paramétriques conditionnent fortement :
 - la validation d'un modèle (1)
 - la qualité de l'implémentation numérique (2)

Propagation des distributions

Équation de Markov

$$g_{\mathbf{Y}}(\eta) = \int d\xi_1 \dots d\xi_k \,\delta\left(\eta - f\left(\xi_1, \dots, \xi_k\right)\right) \,g_{\mathbf{X}_1, \dots, \mathbf{X}_k}\left(\xi_1, \dots, \xi_k\right)$$

Réf. : Evaluation of measurement data – Supplement 1 to the "Guide to the expression of uncertainty in measurement". JCGM 101 :2008. http://www.bipm.org/utils/common/documents/jcgm/JCGM_101_2008_E.pdf

P. Pernot et al. (LCP@Orsay)

Gestion Incert.

4 / 33

Propagation des distributions par Monte Carlo Étape 1 : génération d'un échantillon représentatif des entrées

CITS 24 C

Propagation des distributions par Monte Carlo Étape 2 : application du modèle à chacun des points de l'échantillon

P. Pernot et al. (LCP@Orsay)

Propagation des distributions par Monte Carlo Étape 3 : analyse statistique de l'échantillon des sorties du modèle

1 Identification et caractérisation des paramètres incertains

- requiert une bonne expertise dans la détermination des paramètres considérés
- peu de bases de données avec des données fiables à ce sujet : gros travail à prévoir

Propagation des incertitudes par Monte Carlo

• temps de calcul éventuellement [très] long, mais parallélisme idéal (cloud computing)...

Analyse de sensibilité

- analyse de sensibilité globale, basée les échantillons aléatoires :
 - la plus simple est basée sur l'estimation de corr(Y, X_i) à partir des échantillons

A D F A B F A B F A B

O Identification et caractérisation des paramètres incertains

- requiert une bonne expertise dans la détermination des paramètres considérés
- peu de bases de données avec des données fiables à ce sujet : gros travail à prévoir

Propagation des incertitudes par Monte Carlo

• temps de calcul éventuellement [très] long, mais parallélisme idéal (cloud computing)...

Analyse de sensibilité

- analyse de sensibilité globale, basée les échantillons aléatoires :
 - la plus simple est basée sur l'estimation de corr(Y, X_i) à partir des échantillons

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

O Identification et caractérisation des paramètres incertains

- requiert une bonne expertise dans la détermination des paramètres considérés
- peu de bases de données avec des données fiables à ce sujet : gros travail à prévoir

Propagation des incertitudes par Monte Carlo

• temps de calcul éventuellement [très] long, mais parallélisme idéal (cloud computing)...

Analyse de sensibilité

- analyse de sensibilité globale, basée les échantillons aléatoires :
 - la plus simple est basée sur l'estimation de corr(Y, X_i) à partir des échantillons

Modélisation de photochimie détaillée

Ch.Th. : Burke et al. (2013) Proc. Comb. Inst. 34 :547

P. Pernot et al. (LCP@Orsay)

Gestion Incert.

J. Simul 2013/11/14 9 / 33

Incertitudes des constantes de vitesse

• les équations chimiques sont basées sur des paramètres empiriques

 $A + B \longrightarrow C + D; k_{AB}(T, P, M)$ $\frac{da(t)}{dt} = -k_{AB}(T, P, M) a(t) b(t)$

- les constantes de vitesses sont tirées de mesures et/ou d'estimations (peu de calculs)
 - \longrightarrow toujours évaluées avec une [[très] grande] incertitude
 - \longrightarrow dans certains modèles, il y a de nombreux paramètres estimés (par analogie)

 \rightarrow dans les modèles de Titan, moins de 10 % des constantes de vitesse de réaction ont été mesurées dans des conditions (T,P,M) représentatives (170 K, 10⁻⁶mb, N₂/CH₄)...

10 / 33

Incertitude d'extrapolation

Nagy et al. (2011) Int. J. Chem. Kinet. 43:359

P. Pernot et al. (LCP@Orsay)

Gestion Incert.

11 / 33

Le cas des réactions multi-voies

$$\begin{array}{c} \mathbf{I}^{+} + \mathbf{e}^{-} \xrightarrow{k_{1} \pm u_{k_{1}}} \mathbf{M}_{1} \\ \mathbf{I}^{+} + \mathbf{e}^{-} \xrightarrow{k_{2} \pm u_{k_{2}}} \mathbf{M}_{2} \\ \mathbf{I}^{+} + \mathbf{e}^{-} \xrightarrow{k_{3} \pm u_{k_{3}}} \mathbf{M}_{3} \end{array} \quad \mathbf{Vs.} \quad \mathbf{I}^{+} + \mathbf{e}^{-} \xrightarrow{k \pm u_{k}} \begin{cases} \xrightarrow{b_{1} \pm u_{b_{1}}} \mathbf{M}_{1} \\ \xrightarrow{b_{2} \pm u_{b_{2}}} \mathbf{M}_{2}; \\ \xrightarrow{b_{3} \pm u_{b_{3}}} \mathbf{M}_{3}; \end{cases} \sum b_{i} = 1$$

- les constantes de vitesse (k) et les rapports de branchement (b_i) (RB) sont typiquement mesurés dans des expériences différentes
- Règle d'Or de la Propagation des Incertitudes :
 - "Une séparation des sources d'incertitude tu garderas!"
 - essentiel pour l'implémentation de la somme à 1 des b_i
 - fort impact sur les incertitudes et l'analyse de sensibilité

Carrasco et al. (2007) J. Phys. Chem. A 111 :35

Le cas des réactions multi-voies

$$\begin{array}{c} \mathbf{I}^{+} + \mathbf{e}^{-} \xrightarrow{k_{1} \pm u_{k_{1}}} \mathbf{M}_{1} \\ \mathbf{I}^{+} + \mathbf{e}^{-} \xrightarrow{k_{2} \pm u_{k_{2}}} \mathbf{M}_{2} \\ \mathbf{I}^{+} + \mathbf{e}^{-} \xrightarrow{k_{3} \pm u_{k_{3}}} \mathbf{M}_{3} \end{array} \quad \mathbf{VS.} \quad \mathbf{I}^{+} + \mathbf{e}^{-} \xrightarrow{k \pm u_{k}} \begin{cases} \xrightarrow{b_{1} \pm u_{b_{1}}} \mathbf{M}_{1} \\ \xrightarrow{b_{2} \pm u_{b_{2}}} \mathbf{M}_{2}; \\ \xrightarrow{b_{3} \pm u_{b_{3}}} \mathbf{M}_{2}; \end{cases} \sum b_{i} = 1 \end{cases}$$

- les constantes de vitesse (k) et les rapports de branchement (b_i) (RB) sont typiquement mesurés dans des expériences différentes
- - - essentiel pour l'implémentation de la somme à 1 des b_i
 - fort impact sur les incertitudes et l'analyse de sensibilité

Carrasco et al. (2007) J. Phys. Chem. A 111 :350

(4) (5) (4) (5)

Le cas des réactions multi-voies

$$\begin{array}{c} \mathbf{I}^{+} + \mathbf{e}^{-} \xrightarrow{k_{1} \pm u_{k_{1}}} \mathbf{M}_{1} \\ \mathbf{I}^{+} + \mathbf{e}^{-} \xrightarrow{k_{2} \pm u_{k_{2}}} \mathbf{M}_{2} \\ \mathbf{I}^{+} + \mathbf{e}^{-} \xrightarrow{k_{3} \pm u_{k_{3}}} \mathbf{M}_{3} \end{array} \quad \mathbf{VS.} \quad \mathbf{I}^{+} + \mathbf{e}^{-} \xrightarrow{k \pm u_{k}} \begin{cases} \xrightarrow{b_{1} \pm u_{b_{1}}} \mathbf{M}_{1} \\ \xrightarrow{b_{2} \pm u_{b_{2}}} \mathbf{M}_{2}; \\ \xrightarrow{b_{3} \pm u_{b_{3}}} \mathbf{M}_{3}; \end{cases} \mathbf{D} \mathbf{b}_{i} = \mathbf{I} \end{cases}$$

- les constantes de vitesse (k) et les rapports de branchement (b_i) (RB) sont typiquement mesurés dans des expériences différentes
- Règle d'Or de la Propagation des Incertitudes :

"Une séparation des sources d'incertitude tu garderas !"

- essentiel pour l'implémentation de la somme à 1 des b_i
- fort impact sur les incertitudes et l'analyse de sensibilité

Carrasco et al. (2007) J. Phys. Chem. A 111 :350

Exemple

Réaction à 3 voies de sortie avec des probas (b_1, b_2, b_3)

- dans une expérience on a mesuré $\{M_1, M_2\}$ (B_1) et M_3 $(B_3 = 1 B_1)$;
- et dans une autre M (P_{1}) et M $(P_{2} - 1, P_{2})$ (ou

 M_1 (B_{11}) et M_2 ($B_{12} = 1 - B_{11}$) (ou bien ils sont indéterminés...)

$$\mathbf{I}^{+} + \mathbf{e}^{-} \begin{cases} \begin{array}{c} \frac{b_{1} \pm u_{b_{1}}}{b_{2} \pm u_{b_{2}}} \mathbf{M}_{1} \\ \frac{b_{2} \pm u_{b_{2}}}{b_{3} \pm u_{b_{3}}} \mathbf{M}_{2} \end{array} \quad \forall \mathbf{S}. \quad \mathbf{I}^{+} + \mathbf{e}^{-} \begin{cases} \begin{array}{c} \frac{B_{1} \pm \Delta B_{1}}{c} \left\{ \begin{array}{c} \frac{B_{11} \pm \Delta B_{11}}{c} \mathbf{M}_{1} \\ \frac{B_{12} \pm \Delta B_{12}}{c} \mathbf{M}_{2} \end{array} \\ \frac{B_{3} \pm \Delta B_{3}}{c} \mathbf{M}_{3} \end{array} \end{cases} \mathbf{M}_{3} \end{cases}$$

Plessis et al. (2010) J. Chem. Phys. 133 :134110

Ex. : $B_1 = 0.6 \pm 0.1$, $B_3 = 0.40 \pm 0.05$, $B_{11} \in [0, 1]$, and $B_{12} \in [0, 1]$

Le cas des recombinaisons dissociatives

Pour la majorité des systèmes mesurés les données sont partielles

p.ex. : **CH**₂**CHCNH**⁺ + **e**⁻ [Vigren *et al.* (2009) *ApJ* **695** :317-324]

Produits	Probabilité	Voies exoergiques
$C_3NH_x + y H + wH_2$	$0.50{\pm}0.04$	6
$C_2H_x + CNH_y + zH + wH_2$	0.49±0.04	7
$C_3H_x + NH_y$ $C_2NH_x + CH_y + zH$	$0.01 {\pm} 0.01$	9
x + y + z + 2w = 4		22

Le cas des recombinaisons dissociatives

Pour la majorité des systèmes mesurés les données sont partielles

p.ex. : **CH**₂**CHCNH**⁺ + **e**⁻ [Vigren *et al.* (2009) *ApJ* **695** :317-324]

Produits	Probabilité	Voies exoergiques
$C_3NH_x + y H + wH_2$	$0.50{\pm}0.04$	6
$C_2H_x + CNH_y + zH + wH_2$	0.49±0.04	7
$C_3H_x + NH_y$ $C_2NH_x + CH_y + zH$	$0.01 {\pm} 0.01$	9
x + y + z + 2w = 4		22

Qu'est-ce que je vais bien pouvoir faire de ça???

Nouveau paradigme : les arbres probabilistes

Channel	$\Delta H (eV)$	Channel	$\Delta H (eV)$
$(6a) C_3H_3N + H$	-5.4	$(6l) CNH_3 + C_2H$	-3.2
$(6b) C_3H_2N + H_2$	-5.2	$(6m) CNH_2 + C_2H_2$	-4.7
$(6c) C_3H_2N + 2H$	-0.7	(6n) HCN + C ₂ H ₃	-5.0
$(6d) C_3HN + H + H_2$	-3.6	(60) HCN + C ₂ H ₂ + H	-3.4
$(6e) C_3N + 2H_2$	- 5.2	(6p) HCN + C ₂ H + H ₂	-3.2
$(6f) C_3N + 2H + H_2$	-0.7	$(6q) CN + C_2H_4$	-4.5
$(6g) C_2 H_3 N + CH$	-2.6	$(6r) CN + C_2H_2 + H_2$	-2.6
$(6h) C_2H_2N + CH_2$	-2.9	$(6s) NH_3 + C_3H$	-2.3
(6i) C ₂ HN + CH ₃	-3.0	$(6t) NH_2 + C_3H_2$	-2.3
$(6j) C_2N + CH_4$	-4.5	$(6u) \text{ NH} + C_3 H_3$	-2.1
$(6k) C_2N + CH_3 + H$	0.0	$(6v) N + C_3H_4$	-2.7

$$\sum_{i=1,22} b_i = 1$$

Carrasco et al. (2007) J. Phys. Chem. A 111 :3507

Plessis et al. (2010) J. Chem. Phys. 133:134110

$$\left\{\begin{array}{l} \frac{b_1 \in [0,1]}{C_3} C_3 H_3 N + H \\ \frac{b_2 \in [0,1]}{C_3} C_3 H_2 N + 2H \\ \frac{b_3 \in [0,1]}{C_3} C_3 H_2 N + H_2 \\ \frac{b_4 \in [0,1]}{C_3} C_3 N + H_2 + 2H \\ \frac{b_5 \in [0,1]}{C_3} C_3 N + H_2 + 2H \\ \frac{b_5 \in [0,1]}{C_3} C_3 N + H_2 + 2H \\ \frac{b_5 \in [0,1]}{C_3} C_3 N + 2H_2 \\ \frac{b_5 \in [0,1]}{C_3} C_3 N + 2H_2 \\ \frac{b_5 \in [0,1]}{C_3} C N + L_2 H_2 \\ \frac{b_5 \in [0,1]}{D_3} C N + L_2 H_2 \\ \frac{b_5 \in [0,1]}{D_3} C N + C_2 H_3 \\ \frac{b_{10} \in [0,1]}{D_3} C N + C_2 H_4 \\ \frac{b_{10} \in [0,1]}{D_3} C N + C_2 H_2 + H_2 \\ \frac{b_{10} \in [0,1]}{D_3} C N + C_2 H_4 \\ \frac{b_{10} \in [0,1]}{D_3} C N + C_2 H_2 + H_2 \\ \frac{b_{10} \in [0,1]}{D_3} C N + C_2 H_4 \\ \frac{b_{10} \in [0,1]}{D_3} C_2 H N + C H_3 \\ \frac{b_{10} \in [0,1]}{D_2 C_2 N + C H_4} \\ \frac{b_{10} \in [0,1]}{D_3 C_2 N + C H_4 } \\ \frac{b_{10} \in [0,1]}{D_3 C_2 N + C H_4 } \\ \frac{b_{10} \in [0,1]}{D_3 C_2 N + C H_4 } \\ \frac{b_{10} \in [0,1]}{D_1 C_2 N + C H_3 H_4 } \\ \frac{b_{10} \in [0,1]}{D_2 \in [0,1]} N H_4 - C_3 H_3 \\ \frac{b_{10} \in [0,1]}{D_2 \in [0,1]} N + C_3 H_4 \end{array}\right\}$$

 $H_4C_3N^+ + e^- \longrightarrow$

Image: A matrix

Nouveau paradigme : les arbres probabilistes

$\label{eq:Table 2} Table \ 2 \\ The Branching Fractions in the Dissociative Recombination of CH_2CHCNH^+$			
Fragmentation		Percentage	
(6a6f)	$C_3NH_x + yH + wH_2$	$50\% \pm 4\%$	
(6 <i>l</i> -6 <i>r</i>)	$C_2H_x + CNH_y + zH + wH_2$	$49\% \pm 4\%$	
(6g-6k) and $(6s-6v)$	$C_3H_x + NH_y$; $C_2NH_x + CH_y + zH$	$1\% \pm 1\%$	

Note. For each line x + y + z + 2w = 4.

$$\sum_{i=1,3}^{N} B_i = 1$$
$$\sum_{i=1,n_i}^{N} B_{ij} = 1; i = 1, 3$$

Carrasco et al. (2007) J. Phys. Chem. A 111 :3507

Plessis et al. (2010) J. Chem. Phys. 133:134110

$$CH_{4} + h\nu \longrightarrow \begin{cases} \underbrace{\underline{B}_{neu}(\lambda)}_{\text{Bion}(\lambda)} \begin{cases} \underbrace{\underline{B}_{1}(\lambda)}_{\text{Bion}(\lambda)} \begin{cases} \underbrace{\underline{B}_{1}(\lambda)}_{\text{Bion}(\lambda)} \begin{cases} \underbrace{\underline{B}_{1}(\lambda)}_{\text{Bion}(\lambda)} \\ \underbrace{\underline{B}_{2}(\lambda)}_{\text{Bion}(\lambda)} \end{cases} \begin{cases} \underbrace{\underline{B}_{2}(\lambda)}_{\text{Bion}(\lambda)} \\ \underbrace{\underline{B}_{2}(\lambda)}_{\text{CH}} \\ \underbrace{\underline{B}_{2}(\lambda)}_{\text{C$$

Gans et al. (2013) Icarus 223 :330-342

Extension à des quantités continues

CNIS

Extension à des quantités continues

CITS

Le triptyque Obs-LabSim-Mod

Observations • données partielles • environnement non controlé

Simulation de labo

- données exhaustives
- conditions non représentatives (T, P)

Modélisation

- incomplétude
- incertitude

19 / 33

P. Pernot et al. (LCP@Orsay)

Titan : une usine à grosses molécules

Waite at al. (2007) Science

Lopez-Puertas et al. (2013) ApJ

20 / 33

P. Pernot et al. (LCP@Orsay)

J. Simul 2013/11/14

APSIS : Atmospheric Photochem. Simul. by Synchrotron

P. Pernot et al. (LCP@Orsay)

P. Pernot et al. (LCP@Orsay)

Notre modèle de photochimie VUV de $N_2/CH_4 contient 1700\ réactions (photolyse, bi- et ter-moleculaire, ion-molécule et recomb. dissoc.) et$

237 species (neutres et ions positifs).

- notre implémentation de toutes les données RD : FullDR arbres probabilistes pour 58 ions (sur 116) 448 voies
 62 produits neutres
- la version "standard" basée sur la perte de H : Hloss
 63 voies
 48 produits neutres

Plessis et al., JCP (2010)

H-loss vs. Full model

Z. Peng PhD Thesis (Sept 2013)

Simulation du SM/IE des neutres APSIS

P. Pernot et al. (LCP@Orsay)

CNIS

Simulation du SM/IE des neutres "Titan"

CNIS

- la gestion des incertitudes paramétriques est une étape incontournable pour la [in-]validation d'un modèle
- c'est un outil précieux pour réduire l'incertitude de prédiction
- la représentation probabiliste des paramètres incertains permet de valoriser des données inexploitables autrement

- la gestion des incertitudes paramétriques est une étape incontournable pour la [in-]validation d'un modèle
- c'est un outil précieux pour réduire l'incertitude de prédiction
- la représentation probabiliste des paramètres incertains permet de valoriser des données inexploitables autrement

- la gestion des incertitudes paramétriques est une étape incontournable pour la [in-]validation d'un modèle
- c'est un outil précieux pour réduire l'incertitude de prédiction
- la représentation probabiliste des paramètres incertains permet de valoriser des données inexploitables autrement

Depuis plusieurs années, nous organisons une formation d'initiation à la propagation et à la gestion des incertitudes.

Cette formation est offerte au 1er semestre 2014 dans deux contextes :

- Form. CNRS (Ch; Ens-Ch; ITA/IATOS) http://metrologie.cnrs.fr
- Form. doctorale (ED Chimie, MIPEGE...) http://www.ed-chimie.u-psud.fr/spip.php?breve154